$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ を用いて、$\sin\frac{\pi}{12}$と$\cos\frac{\pi}{12}$の値を求める問題です。その他三角関数加法定理角度の計算2025/6/171. 問題の内容π12=π4−π6\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}12π=4π−6π を用いて、sinπ12\sin\frac{\pi}{12}sin12πとcosπ12\cos\frac{\pi}{12}cos12πの値を求める問題です。2. 解き方の手順sin(α−β)=sinαcosβ−cosαsinβ\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\betasin(α−β)=sinαcosβ−cosαsinβcos(α−β)=cosαcosβ+sinαsinβ\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\betacos(α−β)=cosαcosβ+sinαsinβであるので、これらを用いてsinπ12\sin\frac{\pi}{12}sin12πとcosπ12\cos\frac{\pi}{12}cos12πを計算します。α=π4\alpha = \frac{\pi}{4}α=4π, β=π6\beta = \frac{\pi}{6}β=6π とすると、sinπ12=sin(π4−π6)=sinπ4cosπ6−cosπ4sinπ6=22⋅32−22⋅12=6−24\sin\frac{\pi}{12} = \sin(\frac{\pi}{4} - \frac{\pi}{6}) = \sin\frac{\pi}{4}\cos\frac{\pi}{6} - \cos\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}sin12π=sin(4π−6π)=sin4πcos6π−cos4πsin6π=22⋅23−22⋅21=46−2cosπ12=cos(π4−π6)=cosπ4cosπ6+sinπ4sinπ6=22⋅32+22⋅12=6+24\cos\frac{\pi}{12} = \cos(\frac{\pi}{4} - \frac{\pi}{6}) = \cos\frac{\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\cdot\frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}cos12π=cos(4π−6π)=cos4πcos6π+sin4πsin6π=22⋅23+22⋅21=46+23. 最終的な答えsinπ12=6−24\sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}sin12π=46−2cosπ12=6+24\cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}cos12π=46+2