次の和を求めよ。 $1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + \dots + n(2n-1)$代数学級数シグマ和数列2025/6/171. 問題の内容次の和を求めよ。1⋅1+2⋅3+3⋅5+⋯+n(2n−1)1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + \dots + n(2n-1)1⋅1+2⋅3+3⋅5+⋯+n(2n−1)2. 解き方の手順求める和をSSSとおくと、S=∑k=1nk(2k−1)S = \sum_{k=1}^{n} k(2k-1)S=∑k=1nk(2k−1)となる。この式を展開すると、S=∑k=1n(2k2−k)S = \sum_{k=1}^{n} (2k^2 - k)S=∑k=1n(2k2−k)となる。∑\sum∑ の性質より、S=2∑k=1nk2−∑k=1nkS = 2\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} kS=2∑k=1nk2−∑k=1nkとなる。∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1) と ∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1) を用いると、S=2⋅16n(n+1)(2n+1)−12n(n+1)S = 2 \cdot \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1)S=2⋅61n(n+1)(2n+1)−21n(n+1)S=13n(n+1)(2n+1)−12n(n+1)S = \frac{1}{3} n(n+1)(2n+1) - \frac{1}{2} n(n+1)S=31n(n+1)(2n+1)−21n(n+1)S=2n(n+1)(2n+1)−3n(n+1)6S = \frac{2n(n+1)(2n+1) - 3n(n+1)}{6}S=62n(n+1)(2n+1)−3n(n+1)S=n(n+1)(2(2n+1)−3)6S = \frac{n(n+1)(2(2n+1)-3)}{6}S=6n(n+1)(2(2n+1)−3)S=n(n+1)(4n+2−3)6S = \frac{n(n+1)(4n+2-3)}{6}S=6n(n+1)(4n+2−3)S=n(n+1)(4n−1)6S = \frac{n(n+1)(4n-1)}{6}S=6n(n+1)(4n−1)3. 最終的な答えn(n+1)(4n−1)6\frac{n(n+1)(4n-1)}{6}6n(n+1)(4n−1)