与えられた式 $xy + x + y + 1$ を因数分解する問題です。

代数学因数分解多項式
2025/6/18

1. 問題の内容

与えられた式 xy+x+y+1xy + x + y + 1 を因数分解する問題です。

2. 解き方の手順

この式は4つの項から構成されています。まず、最初の2つの項xy+xxy + xから共通因数xxをくくり出すと、
x(y+1)x(y + 1)
となります。
次に、残りの2つの項y+1y + 1は、すでにy+1y + 1という形になっているので、これをそのままにします。
すると、式全体は
x(y+1)+(y+1)x(y + 1) + (y + 1)
となります。
ここで、y+1y + 1が共通因数になっているので、これをくくり出すと、
(x+1)(y+1)(x + 1)(y + 1)
となります。

3. 最終的な答え

(x+1)(y+1)(x + 1)(y + 1)

「代数学」の関連問題

$a$ を自然数とするとき、$\sqrt{100-2a}$ が自然数となる $a$ は全部でいくつあるか。

平方根整数問題不等式
2025/6/18

与えられた式 $2(3x-1) - (x+1)^2$ を展開し、簡略化する。

式の展開多項式簡略化
2025/6/18

与えられた式 $29^2 - 28^2 + 27^2 - 26^2 + 25^2 - 24^2$ を計算します。

因数分解計算
2025/6/18

次の2つの方程式を解く問題です。 (1) $x^2 + 2x - 2 = 0$ (2) $3x^2 - 4x - 2 = 0$

二次方程式解の公式根号
2025/6/18

与えられた4つの二次方程式を解く問題です。 (1) $x^2 + 7x + 4 = 0$ (2) $3x^2 + 5x - 1 = 0$ (3) $3x^2 - 8x - 3 = 0$ (4) $9x...

二次方程式解の公式因数分解
2025/6/18

以下の4つの2次方程式を解く問題です。 (1) $x(x+4)=0$ (2) $x^2 - 5x + 6 = 0$ (3) $2x^2 + 3x + 1 = 0$ (4) $3x^2 - 4x - 4...

二次方程式因数分解方程式
2025/6/18

2次関数のグラフが3点(2, -2), (3, 5), (-1, 1)を通るとき、その2次関数を求める問題です。

二次関数グラフ連立方程式代入
2025/6/18

与えられた3元1次連立方程式を解く問題です。連立方程式は以下の通りです。 $ \begin{cases} a - b + c = 1 \\ 4a - 2b + c = -6 \\ 9a + 3b + ...

連立方程式線形代数方程式
2025/6/18

与えられた条件を満たす2次関数を求める問題です。 (1) 頂点の座標が$(1, -3)$で、点$(3, 5)$を通る放物線をグラフにもつ2次関数を求めます。 (2) 軸が直線$x=-1$で、2点$(0...

二次関数放物線頂点連立方程式
2025/6/18

$a$ を正の定数とするとき、関数 $y = -x^2 + 2x + 1$ の $0 \le x \le a$ における最大値を求めよ。

二次関数最大値場合分け放物線
2025/6/18