与えられた式 $(x+y)^2 - 7(x+y) + 6$ を因数分解する問題です。

代数学因数分解多項式展開
2025/6/18

1. 問題の内容

与えられた式 (x+y)27(x+y)+6(x+y)^2 - 7(x+y) + 6 を因数分解する問題です。

2. 解き方の手順

まず、x+yx+yAA と置きます。すると、与えられた式は A27A+6A^2 - 7A + 6 となります。
次に、この2次式を因数分解します。
A27A+6=(A1)(A6)A^2 - 7A + 6 = (A-1)(A-6)
最後に、AAx+yx+y に戻します。
(A1)(A6)=(x+y1)(x+y6)(A-1)(A-6) = (x+y-1)(x+y-6)

3. 最終的な答え

(x+y1)(x+y6)(x+y-1)(x+y-6)

「代数学」の関連問題

与えられた二次式 $7x^2 + 11x - 6$ を因数分解します。

因数分解二次式
2025/6/18

与えられた2次式 $3x^2 + 8x + 5$ を因数分解する問題です。

因数分解二次式
2025/6/18

について回答します。 1. 問題の内容 与えられた式 $x^2 - y^2 - 4x + 6y - 5$ を因数分解せよ。

因数分解平方完成多項式
2025/6/18

与えられた2次関数 $y = \frac{1}{3}x^2 - \frac{4}{3}x + \frac{10}{3}$ のグラフを描き、軸と頂点を求める。

二次関数グラフ平方完成頂点
2025/6/18

与えられた連立一次方程式を解く問題です。連立方程式は以下の通りです。 $ \begin{cases} 7x - 4y = 0 \\ -2x + y = 1 \end{cases} $

連立方程式一次方程式加減法代入
2025/6/18

与えられた二次関数 $y = x^2 + 2x - 1$ のグラフを描き、その軸と頂点を求める。

二次関数グラフ平方完成頂点
2025/6/18

2次関数 $y = -2x^2 - 8x - 6$ のグラフをかけ。また、その軸と頂点を求めよ。

二次関数グラフ平方完成頂点
2025/6/18

与えられた方程式は、$|-x+4|=9$ です。絶対値記号を含む方程式を解くことが求められています。

絶対値方程式一次方程式
2025/6/18

画像には、絶対値を含む方程式と不等式の問題が8問あります。 (1) $|x-1|=3$ (2) $|x+1|=7$ (3) $|x-2|<4$ (4) $|x+6| \le 1$ (5) $|x-3|...

絶対値方程式不等式一次不等式絶対値方程式絶対値不等式
2025/6/18

初項が1、公比が5の等比数列$\{a_n\}$がある。この数列の初項から第n項までの和が$10^{100}$以上となる最小のnを求めよ。ただし、$log_{10}2 = 0.3010$とする。

等比数列数列の和対数指数関数
2025/6/18