6個の数字 1, 2, 2, 3, 3, 3 をすべて並べてできる6桁の整数は何個あるかを求める問題です。

離散数学順列組み合わせ重複順列場合の数
2025/6/18

1. 問題の内容

6個の数字 1, 2, 2, 3, 3, 3 をすべて並べてできる6桁の整数は何個あるかを求める問題です。

2. 解き方の手順

6個の数字を並べる順列の総数を計算します。ただし、同じ数字が複数あるため、重複を考慮する必要があります。
6個の数字を並べる順列の総数は、6! です。
6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720
次に、同じ数字の重複を考慮します。2が2個あり、3が3個あります。
2の重複を解消するために、2! で割ります。
2!=2×1=22! = 2 \times 1 = 2
3の重複を解消するために、3! で割ります。
3!=3×2×1=63! = 3 \times 2 \times 1 = 6
したがって、重複を考慮した順列の数は、
6!2!×3!=7202×6=72012=60\frac{6!}{2! \times 3!} = \frac{720}{2 \times 6} = \frac{720}{12} = 60

3. 最終的な答え

60個

「離散数学」の関連問題

GAKUSEI の7文字を1列に並べるとき、G, K, S, I がこの順にあるものは何通りあるかを求める問題です。

順列組み合わせ文字列の並び替え
2025/6/19

右図のような格子状の街路において、点Pから点Qまで最短経路で移動する場合について、以下の問いに答えます。 (1) PからQまでの最短経路の総数を求めます。 (2) 点Rを通るPからQまでの最短経路の数...

組み合わせ最短経路格子状の街路
2025/6/19

PからQまで行く最短経路について、以下の条件を満たす経路の数をそれぞれ求めます。 (1) 総数 (2) Rを通る経路 (3) RとSをともに通る経路 (4) ×印の箇所を通らない経路

組み合わせ最短経路場合の数格子点
2025/6/19

右図のような街路において、点Pから点Qまで行く最短経路について、以下の問いに答えます。 (1) 総数 (2) Rを通る経路 (3) R, Sをともに通る経路 (4) ×印の箇所を通らない経路

組み合わせ最短経路格子状の道場合の数
2025/6/19

6人を3つの部屋A, B, Cに入れる方法は何通りあるか。ただし、各部屋には少なくとも1人は入るものとする。

組み合わせ場合の数グループ分け部屋割り
2025/6/19

東西に5本、南北に6本の格子状の道がある。A地点からB地点へ最短距離で移動するとき、以下の問いに答える。 (1) どのような道順でもよい場合、全部で何通りの道順があるか。 (2) C地点を通る場合、全...

組み合わせ最短経路格子状の道
2025/6/19

東西に5本、南北に6本の格子状の道がある。A地点からB地点へ最短距離で行く場合、以下の問いに答えよ。 (1) どのような道順でもよい場合、全部で何通りの道順があるか。 (2) C地点を通る場合、全部で...

組み合わせ最短経路格子状の道
2025/6/19

与えられた有限オートマトン $M = <Q, \Sigma, \delta, q_0, F>$ について、以下の問いに答える問題です。 * 受理される語の例を3つ、拒否される語の例を3つ示す。 * 受...

有限オートマトン形式言語計算理論言語
2025/6/19

「MEDICINE」の8文字を並び替える問題です。 (1) M, D, C, Nがこの順に並ぶ並べ方の総数を求めます。 (2) EとIが必ず偶数番目にある並べ方の総数を求めます。

順列組み合わせ場合の数文字列
2025/6/19

点Pから点Qまで最短距離で移動する経路の数を求める問題です。ただし、以下の条件を満たす経路の数をそれぞれ求めます。 (1) すべての道順 (2) 点Rを通る道順 (3) 点Rを通らない道順 (4) ×...

組み合わせ経路最短経路順列
2025/6/19