次の計算をせよ。 (1) $\frac{d}{dx}\log_e |2x|$ (2) $\frac{d}{dx}\log_2 x$ (3) $\int x\sqrt{x} dx$ (4) $\int_0^1 3^{2x} dx$解析学微分積分対数関数指数関数2025/6/181. 問題の内容次の計算をせよ。(1) ddxloge∣2x∣\frac{d}{dx}\log_e |2x|dxdloge∣2x∣(2) ddxlog2x\frac{d}{dx}\log_2 xdxdlog2x(3) ∫xxdx\int x\sqrt{x} dx∫xxdx(4) ∫0132xdx\int_0^1 3^{2x} dx∫0132xdx2. 解き方の手順(1) ddxloge∣2x∣\frac{d}{dx}\log_e |2x|dxdloge∣2x∣loge∣2x∣=loge2+loge∣x∣\log_e |2x| = \log_e 2 + \log_e |x|loge∣2x∣=loge2+loge∣x∣ddxloge∣2x∣=ddx(loge2+loge∣x∣)=ddxloge∣x∣\frac{d}{dx}\log_e |2x| = \frac{d}{dx}(\log_e 2 + \log_e |x|) = \frac{d}{dx}\log_e |x|dxdloge∣2x∣=dxd(loge2+loge∣x∣)=dxdloge∣x∣x>0x>0x>0 のとき loge∣x∣=logex\log_e |x| = \log_e xloge∣x∣=logex なので ddxlogex=1x\frac{d}{dx}\log_e x = \frac{1}{x}dxdlogex=x1x<0x<0x<0 のとき loge∣x∣=loge(−x)\log_e |x| = \log_e (-x)loge∣x∣=loge(−x) なので ddxloge(−x)=1−x(−1)=1x\frac{d}{dx}\log_e (-x) = \frac{1}{-x}(-1) = \frac{1}{x}dxdloge(−x)=−x1(−1)=x1よって ddxloge∣2x∣=1x\frac{d}{dx}\log_e |2x| = \frac{1}{x}dxdloge∣2x∣=x1(2) ddxlog2x\frac{d}{dx}\log_2 xdxdlog2xlog2x=logexloge2\log_2 x = \frac{\log_e x}{\log_e 2}log2x=loge2logexddxlog2x=ddx(logexloge2)=1loge2ddxlogex=1loge2⋅1x=1xloge2\frac{d}{dx}\log_2 x = \frac{d}{dx}(\frac{\log_e x}{\log_e 2}) = \frac{1}{\log_e 2}\frac{d}{dx}\log_e x = \frac{1}{\log_e 2} \cdot \frac{1}{x} = \frac{1}{x\log_e 2}dxdlog2x=dxd(loge2logex)=loge21dxdlogex=loge21⋅x1=xloge21(3) ∫xxdx\int x\sqrt{x} dx∫xxdx∫xxdx=∫x3/2dx=x5/25/2+C=25x5/2+C\int x\sqrt{x} dx = \int x^{3/2} dx = \frac{x^{5/2}}{5/2} + C = \frac{2}{5}x^{5/2} + C∫xxdx=∫x3/2dx=5/2x5/2+C=52x5/2+C(4) ∫0132xdx\int_0^1 3^{2x} dx∫0132xdx32x=(32)x=9x3^{2x} = (3^2)^x = 9^x32x=(32)x=9x∫9xdx=∫exloge9dx=exloge9loge9+C=9xloge9+C\int 9^x dx = \int e^{x\log_e 9} dx = \frac{e^{x\log_e 9}}{\log_e 9} + C = \frac{9^x}{\log_e 9} + C∫9xdx=∫exloge9dx=loge9exloge9+C=loge99x+C∫0132xdx=∫019xdx=[9xloge9]01=91loge9−90loge9=9loge9−1loge9=8loge9=8loge32=82loge3=4loge3\int_0^1 3^{2x} dx = \int_0^1 9^x dx = [\frac{9^x}{\log_e 9}]_0^1 = \frac{9^1}{\log_e 9} - \frac{9^0}{\log_e 9} = \frac{9}{\log_e 9} - \frac{1}{\log_e 9} = \frac{8}{\log_e 9} = \frac{8}{\log_e 3^2} = \frac{8}{2\log_e 3} = \frac{4}{\log_e 3}∫0132xdx=∫019xdx=[loge99x]01=loge991−loge990=loge99−loge91=loge98=loge328=2loge38=loge343. 最終的な答え(1) 1x\frac{1}{x}x1(2) 1xloge2\frac{1}{x\log_e 2}xloge21(3) 25x5/2+C\frac{2}{5}x^{5/2} + C52x5/2+C(4) 4loge3\frac{4}{\log_e 3}loge34