$y = \sqrt{3} \sin(\theta - \frac{\pi}{6})$ を $y = A \sin \theta + B \cos \theta$ の形に分解せよ。解析学三角関数加法定理関数の分解2025/6/191. 問題の内容y=3sin(θ−π6)y = \sqrt{3} \sin(\theta - \frac{\pi}{6})y=3sin(θ−6π) を y=Asinθ+Bcosθy = A \sin \theta + B \cos \thetay=Asinθ+Bcosθ の形に分解せよ。2. 解き方の手順三角関数の加法定理を用いる。sin(α−β)=sinαcosβ−cosαsinβ\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \betasin(α−β)=sinαcosβ−cosαsinβを用いると、y=3sin(θ−π6)=3(sinθcosπ6−cosθsinπ6)y = \sqrt{3} \sin(\theta - \frac{\pi}{6}) = \sqrt{3} (\sin \theta \cos \frac{\pi}{6} - \cos \theta \sin \frac{\pi}{6})y=3sin(θ−6π)=3(sinθcos6π−cosθsin6π)cosπ6=32\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}cos6π=23sinπ6=12\sin \frac{\pi}{6} = \frac{1}{2}sin6π=21なので、y=3(sinθ⋅32−cosθ⋅12)y = \sqrt{3} (\sin \theta \cdot \frac{\sqrt{3}}{2} - \cos \theta \cdot \frac{1}{2})y=3(sinθ⋅23−cosθ⋅21)y=3⋅32sinθ−3⋅12cosθy = \sqrt{3} \cdot \frac{\sqrt{3}}{2} \sin \theta - \sqrt{3} \cdot \frac{1}{2} \cos \thetay=3⋅23sinθ−3⋅21cosθy=32sinθ−32cosθy = \frac{3}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \thetay=23sinθ−23cosθ3. 最終的な答え32sinθ−32cosθ\frac{3}{2} \sin \theta - \frac{\sqrt{3}}{2} \cos \theta23sinθ−23cosθ