次の連立方程式を解きます。 $\begin{cases} x = 3y - 6 \\ x - \frac{4}{5}y = \frac{3}{5} \end{cases}$

代数学連立方程式代入法一次方程式
2025/6/19

1. 問題の内容

次の連立方程式を解きます。
{x=3y6x45y=35\begin{cases} x = 3y - 6 \\ x - \frac{4}{5}y = \frac{3}{5} \end{cases}

2. 解き方の手順

まず、2番目の式に5をかけて分数をなくします。
5(x45y)=5(35)5(x - \frac{4}{5}y) = 5(\frac{3}{5})
5x4y=35x - 4y = 3
次に、最初の式 x=3y6x = 3y - 6 を変形して、xx を2番目の式に代入します。
5(3y6)4y=35(3y - 6) - 4y = 3
15y304y=315y - 30 - 4y = 3
11y=3311y = 33
y=3y = 3
最後に、y=3y = 3 を最初の式 x=3y6x = 3y - 6 に代入して xx を求めます。
x=3(3)6x = 3(3) - 6
x=96x = 9 - 6
x=3x = 3

3. 最終的な答え

x=3,y=3x = 3, y = 3

「代数学」の関連問題

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = n^2 - 1$ で与えられているとき、第 $n$ 項 $a_n$ を求めよ。

数列一般項
2025/6/19

$S_n = n^2 - 1$ が与えられています。この式が何を意味するか、またはどのような質問に答えるべきか明確ではありません。問題を解くためには、具体的な質問または指示が必要です。例えば、$S_n...

数列一般項
2025/6/19

2次方程式 $x^2 + x - 2 = 0$ の2つの解を $\alpha, \beta$ とするとき、以下の値を求めます。 (1) $\alpha + \beta$ (2) $\alpha \be...

二次方程式解と係数の関係
2025/6/19

与えられた3つの方程式を解く問題です。 (1) $x^3 = -8$ (2) $x^4 + 5x^2 - 24 = 0$ (3) $x^3 + 2x - 3 = 0$

方程式三次方程式四次方程式複素数
2025/6/19

与えられた3つの方程式を解く問題です。 (1) $x^3 = -8$ (2) $x^4 + 5x^2 - 24 = 0$ (3) $x^3 + 2x - 3 = 0$

方程式三次方程式四次方程式解の公式因数分解複素数
2025/6/19

多項式 $P(x) = x^3 - 2ax^2 + 3ax - 4$ を $x+1$ で割った余りが $5$ であるとき、定数 $a$ の値を求めよ。

多項式剰余の定理因数定理連立方程式
2025/6/19

(1) 2次方程式 $x^2 - 6x + k = 0$ が異なる2つの実数解をもつような定数 $k$ の値の範囲を求める。 (2) 2次方程式 $x^2 - kx + k + 3 = 0$ が重解を...

二次方程式判別式実数解重解不等式
2025/6/19

与えられた4x4行列の行列式を、行基本変形を用いて計算する問題です。サラスの方法は使用禁止です。 与えられた行列は以下の通りです。 $ \begin{pmatrix} 1 & 4 & -1 & 0 \...

線形代数行列式行基本変形上三角行列
2025/6/19

3つの2次方程式の解を判別します。 (1) $5x^2 - 6x + 4 = 0$ (2) $4x^2 - 7x - 3 = 0$ (3) $3x^2 - 12x + 12 = 0$

二次方程式判別式解の判別
2025/6/19

(1) 2次方程式 $x^2 - 3x + 4 = 0$ の2つの解を $\alpha, \beta$ とするとき、$\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$...

二次方程式解と係数の関係解の対称式
2025/6/19