与えられた3つの対数を含む式をそれぞれ簡単にします。代数学対数指数対数関数指数関数計算2025/6/191. 問題の内容与えられた3つの対数を含む式をそれぞれ簡単にします。2. 解き方の手順(1) log332+log954−log36\log_3{\sqrt{32}} + \log_9{54} - \log_{\sqrt{3}}{6}log332+log954−log36まず、32=25=25/2\sqrt{32} = \sqrt{2^5} = 2^{5/2}32=25=25/2, log36=log31/26=2log36\log_{\sqrt{3}}{6} = \log_{3^{1/2}}{6}=2\log_3{6}log36=log31/26=2log36に注意します。また、log954=log354log39=log3(2⋅33)log332=log32+3log332=log32+32\log_9{54} = \frac{\log_3{54}}{\log_3{9}} = \frac{\log_3{(2\cdot 3^3)}}{\log_3{3^2}} = \frac{\log_3{2} + 3\log_3{3}}{2} = \frac{\log_3{2}+3}{2}log954=log39log354=log332log3(2⋅33)=2log32+3log33=2log32+3よって、log332+log954−log36=log325/2+log32+32−2log36\log_3{\sqrt{32}} + \log_9{54} - \log_{\sqrt{3}}{6} = \log_3{2^{5/2}} + \frac{\log_3{2}+3}{2} - 2\log_3{6}log332+log954−log36=log325/2+2log32+3−2log36=52log32+12log32+32−2(log32+log33)=62log32+32−2log32−2=3log32−2log32+32−2=log32−12= \frac{5}{2}\log_3{2} + \frac{1}{2}\log_3{2} + \frac{3}{2} - 2(\log_3{2}+\log_3{3}) = \frac{6}{2}\log_3{2} + \frac{3}{2} - 2\log_3{2} - 2 = 3\log_3{2} - 2\log_3{2} + \frac{3}{2} - 2 = \log_3{2} - \frac{1}{2}=25log32+21log32+23−2(log32+log33)=26log32+23−2log32−2=3log32−2log32+23−2=log32−21=log32−log33=log323=log3233= \log_3{2} - \log_3{\sqrt{3}} = \log_3{\frac{2}{\sqrt{3}}} = \log_3{\frac{2\sqrt{3}}{3}}=log32−log33=log332=log3323(2) (log49−log163)(log916−log38)(\log_4{9} - \log_{16}{3})(\log_9{16} - \log_3{8})(log49−log163)(log916−log38)log49=log29log24=log2322=2log232=log23\log_4{9} = \frac{\log_2{9}}{\log_2{4}} = \frac{\log_2{3^2}}{2} = \frac{2\log_2{3}}{2} = \log_2{3}log49=log24log29=2log232=22log23=log23log163=log23log216=log234\log_{16}{3} = \frac{\log_2{3}}{\log_2{16}} = \frac{\log_2{3}}{4}log163=log216log23=4log23log916=log316log39=log3242=4log322=2log32\log_9{16} = \frac{\log_3{16}}{\log_3{9}} = \frac{\log_3{2^4}}{2} = \frac{4\log_3{2}}{2} = 2\log_3{2}log916=log39log316=2log324=24log32=2log32log38=log323=3log32\log_3{8} = \log_3{2^3} = 3\log_3{2}log38=log323=3log32(log49−log163)(log916−log38)=(log23−14log23)(2log32−3log32)=34log23(−log32)(\log_4{9} - \log_{16}{3})(\log_9{16} - \log_3{8}) = (\log_2{3} - \frac{1}{4}\log_2{3})(2\log_3{2} - 3\log_3{2}) = \frac{3}{4}\log_2{3} (-\log_3{2})(log49−log163)(log916−log38)=(log23−41log23)(2log32−3log32)=43log23(−log32)=−34log23⋅log32=−34log23⋅1log23=−34= -\frac{3}{4}\log_2{3} \cdot \log_3{2} = -\frac{3}{4}\log_2{3}\cdot \frac{1}{\log_2{3}} = -\frac{3}{4}=−43log23⋅log32=−43log23⋅log231=−43(3) 16log2316^{\log_2{3}}16log2316log23=(24)log23=24log23=2log234=34=8116^{\log_2{3}} = (2^4)^{\log_2{3}} = 2^{4\log_2{3}} = 2^{\log_2{3^4}} = 3^4 = 8116log23=(24)log23=24log23=2log234=34=813. 最終的な答え(1) log3233\log_3{\frac{2\sqrt{3}}{3}}log3323(2) −34-\frac{3}{4}−43(3) 818181