与えられた4x4の行列の行列式を、行基本変形を用いて計算する問題です。サラスの方法は使用禁止で、行基本変形で三角行列に変形し、対角成分を掛ける方法で計算する必要があります。 行列は以下の通りです。 $ \begin{vmatrix} 1 & 4 & -1 & 0 \\ 2 & 9 & 2 & 3 \\ -1 & 1 & 2 & 3 \\ 3 & 14 & 1 & 2 \end{vmatrix} $

代数学行列式行基本変形線形代数
2025/6/19

1. 問題の内容

与えられた4x4の行列の行列式を、行基本変形を用いて計算する問題です。サラスの方法は使用禁止で、行基本変形で三角行列に変形し、対角成分を掛ける方法で計算する必要があります。
行列は以下の通りです。
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
2 & 9 & 2 & 3 \\
-1 & 1 & 2 & 3 \\
3 & 14 & 1 & 2
\end{vmatrix} $

2. 解き方の手順

与えられた行列を行基本変形によって上三角行列に変形します。
行基本変形は行列式を変えないものと、定数倍するものがあります。定数倍する行基本変形を行った場合は、最後にその定数で割る必要があります。
1行目を基準として、2,3,4行目の第1成分を0にします。
* 2行目 - 2 * 1行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
-1 & 1 & 2 & 3 \\
3 & 14 & 1 & 2
\end{vmatrix} $
* 3行目 + 1 * 1行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 5 & 1 & 3 \\
3 & 14 & 1 & 2
\end{vmatrix} $
* 4行目 - 3 * 1行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 5 & 1 & 3 \\
0 & 2 & 4 & 2
\end{vmatrix} $
2行目を基準として3,4行目の第2成分を0にします。
* 3行目 - 5 * 2行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & -19 & -12 \\
0 & 2 & 4 & 2
\end{vmatrix} $
* 4行目 - 2 * 2行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & -19 & -12 \\
0 & 0 & -4 & -4
\end{vmatrix} $
3行目を基準として、4行目の第3成分を0にします。
* 4行目 - (4/19) * 3行目
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & -19 & -12 \\
0 & 0 & 0 & -4 + \frac{48}{19}
\end{vmatrix} $
$ \begin{vmatrix}
1 & 4 & -1 & 0 \\
0 & 1 & 4 & 3 \\
0 & 0 & -19 & -12 \\
0 & 0 & 0 & -\frac{28}{19}
\end{vmatrix} $
行列式は対角成分の積で計算できます。
11(19)(2819)=281 * 1 * (-19) * (-\frac{28}{19}) = 28

3. 最終的な答え

28

「代数学」の関連問題

$|x-1| < 3$ が $|x| < 2$ であるための必要条件、十分条件、必要十分条件、またはどれでもないかを判定する問題です。

絶対値不等式必要条件十分条件論理
2025/6/19

(1) $x^2=1 \implies x = -1$ という命題の、逆、対偶、裏を述べ、それぞれの真偽を調べる問題。 (2) $x=3 \text{ かつ } y=2 \implies x+y = ...

命題論理対偶真偽
2025/6/19

実数 $x$ に対して、命題「$x^2 = 1 \Rightarrow x = -1$」の逆、対偶、裏をそれぞれ述べ、それらの真偽を調べよ。

命題論理対偶真偽
2025/6/19

与えられた式は $x^2 = 1$ であり、$x$ の値を求める問題です。与えられた解は $x=-1$ です。

二次方程式方程式の解平方根
2025/6/19

与えられた数を小さい順に並べます。 (1) $\sqrt[3]{5}$, $\sqrt[4]{10}$, $\sqrt{3}$ (2) $4^{\frac{1}{4}}$, $8^{\frac{2}{...

指数対数大小比較
2025/6/19

多項式 $P(x)$ を $x-2$ で割った余りが $-1$、 $x+3$ で割った余りが $9$ であるとき、$P(x)$ を $(x-2)(x+3)$ で割った余りを求める。

多項式剰余の定理因数定理連立方程式
2025/6/19

与えられた2つの3次方程式を解く問題です。 (1) $x^3 - 7x^2 + 14x - 8 = 0$ (2) $x^3 - 6x^2 + 7x - 2 = 0$

三次方程式因数定理因数分解解の公式
2025/6/19

与えられた方程式は以下の通りです。この方程式を解いて $x$ の値を求めます。 $\frac{\frac{2x}{100}}{\frac{5-x}{100} \cdot \frac{5-x}{100}...

二次方程式分数方程式解の公式
2025/6/19

与えられた式は、$49 = \frac{\frac{2x}{100}}{(\frac{5-x}{100})^2}$ です。この式を満たす $x$ の値を求めます。

方程式二次方程式解の公式計算
2025/6/19

与えられた方程式を解く問題です。具体的には以下の4つの方程式を解きます。 (1) $x^3 + 8 = 0$ (2) $x^3 - 27 = 0$ (3) $x^4 - 13x^2 + 36 = 0$...

方程式三次方程式四次方程式解の公式複素数因数分解
2025/6/19