次の微分を計算します。 $\frac{d}{dt} \left[ \left( 5 + \frac{d}{dt} \right) \left( \sin(5t-2) - \cos(5t-2) \right) \right]$解析学微分三角関数2025/6/191. 問題の内容次の微分を計算します。ddt[(5+ddt)(sin(5t−2)−cos(5t−2))]\frac{d}{dt} \left[ \left( 5 + \frac{d}{dt} \right) \left( \sin(5t-2) - \cos(5t-2) \right) \right]dtd[(5+dtd)(sin(5t−2)−cos(5t−2))]2. 解き方の手順まず、内側の微分 ddt(sin(5t−2)−cos(5t−2))\frac{d}{dt} \left( \sin(5t-2) - \cos(5t-2) \right)dtd(sin(5t−2)−cos(5t−2)) を計算します。ddtsin(5t−2)=cos(5t−2)⋅ddt(5t−2)=5cos(5t−2)\frac{d}{dt} \sin(5t-2) = \cos(5t-2) \cdot \frac{d}{dt}(5t-2) = 5\cos(5t-2)dtdsin(5t−2)=cos(5t−2)⋅dtd(5t−2)=5cos(5t−2)ddtcos(5t−2)=−sin(5t−2)⋅ddt(5t−2)=−5sin(5t−2)\frac{d}{dt} \cos(5t-2) = -\sin(5t-2) \cdot \frac{d}{dt}(5t-2) = -5\sin(5t-2)dtdcos(5t−2)=−sin(5t−2)⋅dtd(5t−2)=−5sin(5t−2)したがって、ddt(sin(5t−2)−cos(5t−2))=5cos(5t−2)−(−5sin(5t−2))=5cos(5t−2)+5sin(5t−2)\frac{d}{dt} \left( \sin(5t-2) - \cos(5t-2) \right) = 5\cos(5t-2) - (-5\sin(5t-2)) = 5\cos(5t-2) + 5\sin(5t-2)dtd(sin(5t−2)−cos(5t−2))=5cos(5t−2)−(−5sin(5t−2))=5cos(5t−2)+5sin(5t−2)次に、この結果を使って元の式を書き換えます。ddt[(5+ddt)(sin(5t−2)−cos(5t−2))]=ddt[5(sin(5t−2)−cos(5t−2))+5cos(5t−2)+5sin(5t−2)]\frac{d}{dt} \left[ \left( 5 + \frac{d}{dt} \right) \left( \sin(5t-2) - \cos(5t-2) \right) \right] = \frac{d}{dt} \left[ 5(\sin(5t-2) - \cos(5t-2)) + 5\cos(5t-2) + 5\sin(5t-2) \right]dtd[(5+dtd)(sin(5t−2)−cos(5t−2))]=dtd[5(sin(5t−2)−cos(5t−2))+5cos(5t−2)+5sin(5t−2)]=ddt[5sin(5t−2)−5cos(5t−2)+5cos(5t−2)+5sin(5t−2)]= \frac{d}{dt} \left[ 5\sin(5t-2) - 5\cos(5t-2) + 5\cos(5t-2) + 5\sin(5t-2) \right]=dtd[5sin(5t−2)−5cos(5t−2)+5cos(5t−2)+5sin(5t−2)]=ddt[10sin(5t−2)]= \frac{d}{dt} \left[ 10\sin(5t-2) \right]=dtd[10sin(5t−2)]=10⋅ddtsin(5t−2)= 10 \cdot \frac{d}{dt} \sin(5t-2)=10⋅dtdsin(5t−2)=10⋅cos(5t−2)⋅ddt(5t−2)= 10 \cdot \cos(5t-2) \cdot \frac{d}{dt}(5t-2)=10⋅cos(5t−2)⋅dtd(5t−2)=10⋅cos(5t−2)⋅5= 10 \cdot \cos(5t-2) \cdot 5=10⋅cos(5t−2)⋅5=50cos(5t−2)= 50\cos(5t-2)=50cos(5t−2)3. 最終的な答え50cos(5t−2)50\cos(5t-2)50cos(5t−2)