数列$\{a_n\}$が$a_1 = 4$、$a_{n+1} = \frac{4a_n + 3}{a_n + 2}$で定められている。このとき、$b_n = \frac{a_n - 3}{a_n + 1}$とおく。$b_{n+1}$を$b_n$で表せ。代数学数列漸化式分数式2025/6/201. 問題の内容数列{an}\{a_n\}{an}がa1=4a_1 = 4a1=4、an+1=4an+3an+2a_{n+1} = \frac{4a_n + 3}{a_n + 2}an+1=an+24an+3で定められている。このとき、bn=an−3an+1b_n = \frac{a_n - 3}{a_n + 1}bn=an+1an−3とおく。bn+1b_{n+1}bn+1をbnb_nbnで表せ。2. 解き方の手順まず、an+1a_{n+1}an+1を用いてbn+1b_{n+1}bn+1を表す。bn+1=an+1−3an+1+1b_{n+1} = \frac{a_{n+1} - 3}{a_{n+1} + 1}bn+1=an+1+1an+1−3次に、an+1=4an+3an+2a_{n+1} = \frac{4a_n + 3}{a_n + 2}an+1=an+24an+3を代入する。bn+1=4an+3an+2−34an+3an+2+1b_{n+1} = \frac{\frac{4a_n + 3}{a_n + 2} - 3}{\frac{4a_n + 3}{a_n + 2} + 1}bn+1=an+24an+3+1an+24an+3−3分母分子にan+2a_n + 2an+2を掛ける。bn+1=4an+3−3(an+2)4an+3+(an+2)b_{n+1} = \frac{4a_n + 3 - 3(a_n + 2)}{4a_n + 3 + (a_n + 2)}bn+1=4an+3+(an+2)4an+3−3(an+2)整理する。bn+1=4an+3−3an−64an+3+an+2b_{n+1} = \frac{4a_n + 3 - 3a_n - 6}{4a_n + 3 + a_n + 2}bn+1=4an+3+an+24an+3−3an−6bn+1=an−35an+5b_{n+1} = \frac{a_n - 3}{5a_n + 5}bn+1=5an+5an−3bn+1=an−35(an+1)b_{n+1} = \frac{a_n - 3}{5(a_n + 1)}bn+1=5(an+1)an−3ここで、bn=an−3an+1b_n = \frac{a_n - 3}{a_n + 1}bn=an+1an−3より、an−3=bn(an+1)a_n - 3 = b_n(a_n + 1)an−3=bn(an+1)であるから、bn+1=bn(an+1)5(an+1)b_{n+1} = \frac{b_n(a_n + 1)}{5(a_n + 1)}bn+1=5(an+1)bn(an+1)よって、bn+1=bn5b_{n+1} = \frac{b_n}{5}bn+1=5bn3. 最終的な答えbn+1=15bnb_{n+1} = \frac{1}{5} b_nbn+1=51bn