与えられた2つの式を展開する問題です。 (1) $(x+y)(x+y-z)$ (2) $(x-y+3)(x-y-7)$代数学展開多項式式変形2025/6/201. 問題の内容与えられた2つの式を展開する問題です。(1) (x+y)(x+y−z)(x+y)(x+y-z)(x+y)(x+y−z)(2) (x−y+3)(x−y−7)(x-y+3)(x-y-7)(x−y+3)(x−y−7)2. 解き方の手順(1) (x+y)(x+y−z)(x+y)(x+y-z)(x+y)(x+y−z) を展開します。x+y=Ax+y = Ax+y=A とおくと、(x+y)(x+y−z)=A(A−z)=A2−Az(x+y)(x+y-z) = A(A-z) = A^2 - Az(x+y)(x+y−z)=A(A−z)=A2−Azここで A=x+yA = x+yA=x+y を代入すると、(x+y)2−(x+y)z=(x2+2xy+y2)−(xz+yz)=x2+2xy+y2−xz−yz(x+y)^2 - (x+y)z = (x^2 + 2xy + y^2) - (xz + yz) = x^2 + 2xy + y^2 - xz - yz(x+y)2−(x+y)z=(x2+2xy+y2)−(xz+yz)=x2+2xy+y2−xz−yzしたがって、(x+y)(x+y−z)=x2+y2+2xy−xz−yz(x+y)(x+y-z) = x^2 + y^2 + 2xy - xz - yz(x+y)(x+y−z)=x2+y2+2xy−xz−yz(2) (x−y+3)(x−y−7)(x-y+3)(x-y-7)(x−y+3)(x−y−7) を展開します。x−y=Bx-y = Bx−y=B とおくと、(x−y+3)(x−y−7)=(B+3)(B−7)=B2−7B+3B−21=B2−4B−21(x-y+3)(x-y-7) = (B+3)(B-7) = B^2 -7B + 3B -21 = B^2 -4B -21(x−y+3)(x−y−7)=(B+3)(B−7)=B2−7B+3B−21=B2−4B−21ここで B=x−yB = x-yB=x−y を代入すると、(x−y)2−4(x−y)−21=(x2−2xy+y2)−(4x−4y)−21=x2−2xy+y2−4x+4y−21(x-y)^2 - 4(x-y) - 21 = (x^2 - 2xy + y^2) - (4x - 4y) - 21 = x^2 - 2xy + y^2 - 4x + 4y - 21(x−y)2−4(x−y)−21=(x2−2xy+y2)−(4x−4y)−21=x2−2xy+y2−4x+4y−21したがって、(x−y+3)(x−y−7)=x2+y2−2xy−4x+4y−21(x-y+3)(x-y-7) = x^2 + y^2 - 2xy - 4x + 4y - 21(x−y+3)(x−y−7)=x2+y2−2xy−4x+4y−213. 最終的な答え(1) x2+y2+2xy−xz−yzx^2 + y^2 + 2xy - xz - yzx2+y2+2xy−xz−yz(2) x2+y2−2xy−4x+4y−21x^2 + y^2 - 2xy - 4x + 4y - 21x2+y2−2xy−4x+4y−21