異なる8個の玉から2個の玉を選ぶとき、選び方は何通りあるか求める問題です。

確率論・統計学組み合わせ場合の数nCr階乗
2025/3/29

1. 問題の内容

異なる8個の玉から2個の玉を選ぶとき、選び方は何通りあるか求める問題です。

2. 解き方の手順

この問題は組み合わせの問題です。異なる nn 個のものから rr 個のものを選ぶ組み合わせの数は、組み合わせの公式を使って計算できます。
組み合わせの公式は以下の通りです。
nCr=n!r!(nr)!_nC_r = \frac{n!}{r!(n-r)!}
ここで、n!n!nn の階乗を表し、n!=n×(n1)×(n2)××2×1n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1 です。
この問題では、n=8n = 8 であり、r=2r = 2 なので、組み合わせの数は次のようになります。
8C2=8!2!(82)!=8!2!6!=8×7×6!2×1×6!=8×72×1=562=28_8C_2 = \frac{8!}{2!(8-2)!} = \frac{8!}{2!6!} = \frac{8 \times 7 \times 6!}{2 \times 1 \times 6!} = \frac{8 \times 7}{2 \times 1} = \frac{56}{2} = 28
したがって、異なる8個の玉から2個の玉を選ぶ選び方は28通りです。

3. 最終的な答え

28通り

「確率論・統計学」の関連問題

白玉2つと赤玉5つが入っている袋から1個の玉を取り出し、色を調べてから袋に戻す操作を40回繰り返す。白玉を取り出す回数 $X$ は二項分布 $B(n, p)$ に従う。 (1) $n$ と $p$ を...

確率二項分布期待値分散標準偏差
2025/6/6

1から4までの数字が書かれたカードが合計10枚あります。1が4枚、2が3枚、3が2枚、4が1枚です。この中からランダムに1枚を選び、そのカードに書かれた数をXとします。Xの期待値E(X)、X^2の期待...

期待値分散確率分布
2025/6/6

8人を指定された人数でいくつかのグループに分ける場合の数を計算する問題です。 (1) 8人をA, B, C, Dの4つの組に、2人ずつ分ける場合の数を求める。 (2) 8人を2人ずつの4つの組に分ける...

組み合わせ場合の数順列二項係数
2025/6/6

確率変数 $X$ の期待値が $E[X] = \frac{5}{2}$、分散が $V[X] = \frac{5}{4}$ であるとき、確率変数 $-2X+3$ の期待値、分散、標準偏差を求める。

期待値分散標準偏差確率変数線形性
2025/6/6

1と書かれたカードが4枚、2と書かれたカードが3枚、3と書かれたカードが2枚、4と書かれたカードが1枚、合計10枚のカードがある。この中から無作為に1枚カードを取り出し、取り出したカードに書かれた数を...

期待値分散確率変数確率分布
2025/6/6

大小中3個のサイコロを投げるとき、以下の条件を満たす場合はそれぞれ何通りあるか。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率組み合わせサイコロ場合の数
2025/6/6

大小中3個のサイコロを投げたとき、以下の条件を満たす場合の数をそれぞれ求めます。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率場合の数サイコロ組み合わせ
2025/6/6

大小中3個のサイコロを投げるとき、以下の事象が起こる場合の数をそれぞれ求める問題です。 (1) 目の数が全て異なる (2) 少なくとも2個のサイコロの目が同じ (3) 目の積が3の倍数 (4) 目の和...

場合の数確率サイコロ組み合わせ一筆書き
2025/6/6

## 1. 問題の内容

確率四分位数四分位範囲硬貨サイコロデータ分析
2025/6/6

大小中3個のサイコロを投げるとき、以下の条件を満たす場合の数をそれぞれ求めます。 (1) 目の出方がすべて異なる。 (2) 少なくとも2個が同じ目である。 (3) 目の積が3の倍数である。 (4) 目...

確率場合の数サイコロ組み合わせ
2025/6/6