与えられた式 $2xy - 3x + 2y - 3$ を因数分解する問題です。

代数学因数分解多項式
2025/6/22

1. 問題の内容

与えられた式 2xy3x+2y32xy - 3x + 2y - 3 を因数分解する問題です。

2. 解き方の手順

まず、最初の2項 2xy3x2xy - 3x から共通因数 xx をくくり出します。
2xy - 3x = x(2y - 3)
次に、与えられた式全体を書き換えます。
2xy - 3x + 2y - 3 = x(2y - 3) + (2y - 3)
ここで、x(2y3)x(2y - 3)(2y3)(2y - 3) の共通因数 2y32y - 3 をくくり出します。
x(2y - 3) + (2y - 3) = (2y - 3)(x + 1)

3. 最終的な答え

(2y3)(x+1)(2y - 3)(x + 1)

「代数学」の関連問題

以下の連立不等式について、 $5x - 8 > 2x + 1$ ...(1) $x + 3 \geq 3x - a$ ...(2) (1) 不等式(1)を解く。 (2) 不等式(2)を解く。 (3) ...

不等式連立不等式数直線不等式の解
2025/6/22

2次方程式 $x^2 + (a^2 + a)x - 3 = 0$ の解の一つが $x = 1$ であるとき、$a$ の値を求める。

二次方程式解の代入因数分解
2025/6/22

(1) 放物線 $y=x^2-3x+2$ を平行移動した曲線で、2点 $(1, 1)$, $(2, 3)$ を通る2次関数を求めよ。 (2) 放物線 $y=2x^2$ を平行移動した曲線で、点 $(2...

二次関数放物線平行移動頂点二次方程式
2025/6/22

## 数学の問題の解答

線形代数行列固有値固有ベクトル座標変換2次形式直交行列双曲線
2025/6/22

与えられた2つの問題を解きます。 (1) $\sum_{k=1}^{10} (k^3 + 4k + 7)$ (2) 画像では不鮮明ですが、$\sum_{k=10}^{20} k^2$ と解釈します。

級数シグマ数列の和
2025/6/22

次の2つの一次不等式を解きます。 (1) $\frac{1}{6}x - \frac{1}{2} \le \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 > ...

一次不等式不等式計算
2025/6/22

2次関数 $y = x^2 + x - 6$ のグラフと $x$ 軸との共有点の座標を求めます。

二次関数二次方程式グラフx軸との共有点因数分解
2025/6/22

パスカルの三角形を利用して、次の式を展開する。 (1) $(a+b)^4$ (2) $(a+b)^7$ (3) $(x+1)^5$ (4) $(x-2)^4$ (5) $(2x+1)^6$

二項定理展開パスカルの三角形
2025/6/22

次の2つの1次不等式を解きます。 (1) $\frac{1}{6}x \le \frac{1}{2}x - \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 >...

一次不等式不等式計算
2025/6/22

次の1次不等式を解きます。 (2) $-7x > 35$ (3) $6x - 10 < x$ (4) $5x + 16 \geq 8x - 2$ (5) $2(x + 6) < 7x - 3$

一次不等式不等式
2025/6/22