問題は絶対値不等式 $|2x-5| > 3$ を解くことです。

代数学絶対値不等式不等式一次不等式数直線
2025/6/22

1. 問題の内容

問題は絶対値不等式 2x5>3|2x-5| > 3 を解くことです。

2. 解き方の手順

絶対値の定義より、
2x5>3|2x-5| > 3 は、
2x5>32x-5 > 3 または 2x5<32x-5 < -3
と同値です。
まず、2x5>32x-5 > 3 を解きます。
2x>3+52x > 3 + 5
2x>82x > 8
x>4x > 4
次に、2x5<32x-5 < -3 を解きます。
2x<3+52x < -3 + 5
2x<22x < 2
x<1x < 1
したがって、x<1x < 1 または x>4x > 4 が解となります。

3. 最終的な答え

x<1x < 1 または x>4x > 4

「代数学」の関連問題

$n$ が自然数のとき、${}_n C_0 + {}_n C_1 + \dots + {}_n C_n$ を $n$ の簡単な式で表す問題です。

二項定理組み合わせ二項係数
2025/6/23

$n$ が自然数のとき、${}_nC_0 + {}_nC_1 + \dots + {}_nC_n$ を $n$ の簡単な式で表す問題です。

二項定理組み合わせ二項係数
2025/6/23

$n$が自然数のとき、${}_nC_0 + {}_nC_1 + \dots + {}_nC_n$ を$n$の簡単な式で表す問題です。

二項定理組み合わせ数学的証明
2025/6/23

$(a + \frac{b}{2} + 3c)^8$ の展開式における $a^3b^3c^2$ の項の係数を求める問題です。

多項定理二項展開係数
2025/6/23

与えられた数式の値を求める問題です。数式は $\sqrt{\frac{1-x^2}{1+x^2}}$ です。

数式根号式の簡略化
2025/6/23

整式 $3x^3 - 2x^2 + 1$ をある整式 $A$ で割ると、商が $x+1$、余りが $x-3$ であるとき、整式 $A$ を求める問題です。

多項式割り算因数定理
2025/6/23

与えられた3つの方程式を解く問題です。 (1) $x^3 - 27 = 0$ (2) $x^3 + 8 = 0$ (3) $x^3 = 64$

三次方程式因数分解解の公式複素数
2025/6/23

与えられた4つの3次式を因数分解する問題です。 (1) $x^3 + 2x^2 - x - 2$ (2) $x^3 - 7x - 6$ (3) $x^3 - 2x^2 - 4x + 8$ (4) $2...

因数分解多項式3次式
2025/6/23

問題は、多項式 $P(x)$ が与えられた条件を満たすように、定数 $a$ の値を求める問題です。 (1) 多項式 $P(x) = x^3 - ax - 2$ が $x - 2$ で割り切れる。 (2...

多項式剰余の定理因数定理定数
2025/6/23

多項式 $P(x)$ を与えられた一次式で割ったときの余りを求める問題です。余りの定理を利用します。

多項式余りの定理整式除算
2025/6/23