与えられた方程式は $\frac{-x+5}{2} = \frac{1}{3}x$ です。この方程式を解いて、$x$ の値を求めます。

代数学一次方程式方程式の解法分数
2025/6/22

1. 問題の内容

与えられた方程式は x+52=13x\frac{-x+5}{2} = \frac{1}{3}x です。この方程式を解いて、xx の値を求めます。

2. 解き方の手順

まず、方程式の両辺に 66 を掛けて、分母を払います。
6x+52=613x6 \cdot \frac{-x+5}{2} = 6 \cdot \frac{1}{3}x
3(x+5)=2x3(-x+5) = 2x
次に、左辺を展開します。
3x+15=2x-3x + 15 = 2x
次に、xx の項を一方にまとめます。両辺に 3x3x を加えます。
15=2x+3x15 = 2x + 3x
15=5x15 = 5x
最後に、xx について解きます。両辺を 55 で割ります。
x=155x = \frac{15}{5}
x=3x = 3

3. 最終的な答え

x=3x = 3

「代数学」の関連問題

与えられた2つの問題を解きます。 (1) $\sum_{k=1}^{10} (k^3 + 4k + 7)$ (2) 画像では不鮮明ですが、$\sum_{k=10}^{20} k^2$ と解釈します。

級数シグマ数列の和
2025/6/22

次の2つの一次不等式を解きます。 (1) $\frac{1}{6}x - \frac{1}{2} \le \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 > ...

一次不等式不等式計算
2025/6/22

2次関数 $y = x^2 + x - 6$ のグラフと $x$ 軸との共有点の座標を求めます。

二次関数二次方程式グラフx軸との共有点因数分解
2025/6/22

パスカルの三角形を利用して、次の式を展開する。 (1) $(a+b)^4$ (2) $(a+b)^7$ (3) $(x+1)^5$ (4) $(x-2)^4$ (5) $(2x+1)^6$

二項定理展開パスカルの三角形
2025/6/22

次の2つの1次不等式を解きます。 (1) $\frac{1}{6}x \le \frac{1}{2}x - \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 >...

一次不等式不等式計算
2025/6/22

次の1次不等式を解きます。 (2) $-7x > 35$ (3) $6x - 10 < x$ (4) $5x + 16 \geq 8x - 2$ (5) $2(x + 6) < 7x - 3$

一次不等式不等式
2025/6/22

2次方程式 $2x^2 - 3x + 4 = 0$ の実数解の個数を求める問題です。

二次方程式判別式解の個数
2025/6/22

問題は、$\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ を簡単にすることです。有理化が求められています。

有理化根号式の計算
2025/6/22

与えられた式 $(2\sqrt{3} - \sqrt{2})^2$ を計算しなさい。

式の計算平方根展開
2025/6/22

与えられた分数 $\frac{2\sqrt{5}}{1 + \sqrt{3}}$ の分母を有理化せよ。

分母の有理化平方根式の計算
2025/6/22