$x$ の2次方程式 $x^2 - 4x - 2k = 0$ が異なる2つの実数解をもつような定数 $k$ の値の範囲を求める問題です。

代数学二次方程式判別式不等式実数解
2025/6/22

1. 問題の内容

xx の2次方程式 x24x2k=0x^2 - 4x - 2k = 0 が異なる2つの実数解をもつような定数 kk の値の範囲を求める問題です。

2. 解き方の手順

2次方程式が異なる2つの実数解をもつ条件は、判別式 DDD>0D > 0 となることです。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の判別式は D=b24acD = b^2 - 4ac で与えられます。
今回の問題では、a=1a = 1, b=4b = -4, c=2kc = -2k なので、判別式 DD
D=(4)24(1)(2k)=16+8kD = (-4)^2 - 4(1)(-2k) = 16 + 8k
となります。
異なる2つの実数解をもつためには、D>0D > 0 である必要があるので、
16+8k>016 + 8k > 0
この不等式を kk について解きます。
8k>168k > -16
k>2k > -2

3. 最終的な答え

k>2k > -2
したがって、選択肢3が正しいです。

「代数学」の関連問題

与えられた2つの問題を解きます。 (1) $\sum_{k=1}^{10} (k^3 + 4k + 7)$ (2) 画像では不鮮明ですが、$\sum_{k=10}^{20} k^2$ と解釈します。

級数シグマ数列の和
2025/6/22

次の2つの一次不等式を解きます。 (1) $\frac{1}{6}x - \frac{1}{2} \le \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 > ...

一次不等式不等式計算
2025/6/22

2次関数 $y = x^2 + x - 6$ のグラフと $x$ 軸との共有点の座標を求めます。

二次関数二次方程式グラフx軸との共有点因数分解
2025/6/22

パスカルの三角形を利用して、次の式を展開する。 (1) $(a+b)^4$ (2) $(a+b)^7$ (3) $(x+1)^5$ (4) $(x-2)^4$ (5) $(2x+1)^6$

二項定理展開パスカルの三角形
2025/6/22

次の2つの1次不等式を解きます。 (1) $\frac{1}{6}x \le \frac{1}{2}x - \frac{2}{3}x - \frac{5}{4}$ (2) $0.32x - 0.4 >...

一次不等式不等式計算
2025/6/22

次の1次不等式を解きます。 (2) $-7x > 35$ (3) $6x - 10 < x$ (4) $5x + 16 \geq 8x - 2$ (5) $2(x + 6) < 7x - 3$

一次不等式不等式
2025/6/22

2次方程式 $2x^2 - 3x + 4 = 0$ の実数解の個数を求める問題です。

二次方程式判別式解の個数
2025/6/22

問題は、$\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$ を簡単にすることです。有理化が求められています。

有理化根号式の計算
2025/6/22

与えられた式 $(2\sqrt{3} - \sqrt{2})^2$ を計算しなさい。

式の計算平方根展開
2025/6/22

与えられた分数 $\frac{2\sqrt{5}}{1 + \sqrt{3}}$ の分母を有理化せよ。

分母の有理化平方根式の計算
2025/6/22