$\lim_{n \to \infty} \sum_{k=4}^{n} \frac{1}{(k-1)(k-3)}$ を求めよ。解析学極限級数部分分数分解数列2025/6/221. 問題の内容limn→∞∑k=4n1(k−1)(k−3)\lim_{n \to \infty} \sum_{k=4}^{n} \frac{1}{(k-1)(k-3)}limn→∞∑k=4n(k−1)(k−3)1 を求めよ。2. 解き方の手順まず、1(k−1)(k−3)\frac{1}{(k-1)(k-3)}(k−1)(k−3)1 を部分分数分解します。1(k−1)(k−3)=Ak−1+Bk−3\frac{1}{(k-1)(k-3)} = \frac{A}{k-1} + \frac{B}{k-3}(k−1)(k−3)1=k−1A+k−3B と置きます。両辺に (k−1)(k−3)(k-1)(k-3)(k−1)(k−3) を掛けると、1=A(k−3)+B(k−1)1 = A(k-3) + B(k-1)1=A(k−3)+B(k−1) となります。k=1k=1k=1 を代入すると、 1=A(1−3)+B(1−1)⇒1=−2A⇒A=−121 = A(1-3) + B(1-1) \Rightarrow 1 = -2A \Rightarrow A = -\frac{1}{2}1=A(1−3)+B(1−1)⇒1=−2A⇒A=−21k=3k=3k=3 を代入すると、 1=A(3−3)+B(3−1)⇒1=2B⇒B=121 = A(3-3) + B(3-1) \Rightarrow 1 = 2B \Rightarrow B = \frac{1}{2}1=A(3−3)+B(3−1)⇒1=2B⇒B=21したがって、1(k−1)(k−3)=−12(k−1)+12(k−3)=12(1k−3−1k−1)\frac{1}{(k-1)(k-3)} = -\frac{1}{2(k-1)} + \frac{1}{2(k-3)} = \frac{1}{2} \left(\frac{1}{k-3} - \frac{1}{k-1}\right)(k−1)(k−3)1=−2(k−1)1+2(k−3)1=21(k−31−k−11) となります。次に、∑k=4n1(k−1)(k−3)\sum_{k=4}^{n} \frac{1}{(k-1)(k-3)}∑k=4n(k−1)(k−3)1 を計算します。∑k=4n1(k−1)(k−3)=12∑k=4n(1k−3−1k−1)\sum_{k=4}^{n} \frac{1}{(k-1)(k-3)} = \frac{1}{2} \sum_{k=4}^{n} \left(\frac{1}{k-3} - \frac{1}{k-1}\right)∑k=4n(k−1)(k−3)1=21∑k=4n(k−31−k−11)=12[(11−13)+(12−14)+(13−15)+(14−16)+⋯+(1n−3−1n−1)+(1n−2−1n)]= \frac{1}{2} \left[ \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \cdots + \left(\frac{1}{n-3} - \frac{1}{n-1}\right) + \left(\frac{1}{n-2} - \frac{1}{n}\right) \right]=21[(11−31)+(21−41)+(31−51)+(41−61)+⋯+(n−31−n−11)+(n−21−n1)]=12[1+12−1n−1−1n]= \frac{1}{2} \left[ 1 + \frac{1}{2} - \frac{1}{n-1} - \frac{1}{n} \right]=21[1+21−n−11−n1]=12[32−1n−1−1n]= \frac{1}{2} \left[ \frac{3}{2} - \frac{1}{n-1} - \frac{1}{n} \right]=21[23−n−11−n1]=34−12(n−1)−12n= \frac{3}{4} - \frac{1}{2(n-1)} - \frac{1}{2n}=43−2(n−1)1−2n1最後に、limn→∞∑k=4n1(k−1)(k−3)\lim_{n \to \infty} \sum_{k=4}^{n} \frac{1}{(k-1)(k-3)}limn→∞∑k=4n(k−1)(k−3)1 を計算します。limn→∞∑k=4n1(k−1)(k−3)=limn→∞(34−12(n−1)−12n)\lim_{n \to \infty} \sum_{k=4}^{n} \frac{1}{(k-1)(k-3)} = \lim_{n \to \infty} \left( \frac{3}{4} - \frac{1}{2(n-1)} - \frac{1}{2n} \right)limn→∞∑k=4n(k−1)(k−3)1=limn→∞(43−2(n−1)1−2n1)=34−limn→∞12(n−1)−limn→∞12n=34−0−0=34= \frac{3}{4} - \lim_{n \to \infty} \frac{1}{2(n-1)} - \lim_{n \to \infty} \frac{1}{2n} = \frac{3}{4} - 0 - 0 = \frac{3}{4}=43−limn→∞2(n−1)1−limn→∞2n1=43−0−0=433. 最終的な答え34\frac{3}{4}43