与えられた式 $2020 \times 2025 - 2023 \times 2022$ を計算し、その答えを求めなさい。

代数学式の計算展開因数分解
2025/6/22

1. 問題の内容

与えられた式 2020×20252023×20222020 \times 2025 - 2023 \times 2022 を計算し、その答えを求めなさい。

2. 解き方の手順

式をよく見ると、2020202020222022 は近い数、2023202320252025 も近い数であることに気づきます。
そこで、x=2020x = 2020 とおいて、式を書き換えます。
2025=x+52025 = x + 5
2022=x+22022 = x + 2
2023=x+32023 = x + 3
したがって、元の式は次のようになります。
x(x+5)(x+3)(x+2)x(x+5) - (x+3)(x+2)
これを展開します。
x(x+5)=x2+5xx(x+5) = x^2 + 5x
(x+3)(x+2)=x2+2x+3x+6=x2+5x+6(x+3)(x+2) = x^2 + 2x + 3x + 6 = x^2 + 5x + 6
したがって、元の式は
x2+5x(x2+5x+6)=x2+5xx25x6=6x^2 + 5x - (x^2 + 5x + 6) = x^2 + 5x - x^2 - 5x - 6 = -6

3. 最終的な答え

-6

「代数学」の関連問題

与えられた2つの命題の対偶を求める問題です。 (1) $x = 6 \Rightarrow x^2 = 36$ (2) $n$は4の倍数 $ \Rightarrow n$は2の倍数

命題対偶論理
2025/6/22

与えられた条件が、別の条件を満たすための十分条件、必要条件、必要十分条件のいずれであるかを判断する問題です。具体的には、以下の4つの問いに答えます。 (1) $x=4$ は $x^2 = 16$ であ...

論理条件必要十分条件不等式方程式
2025/6/22

与えられた条件の否定を求め、空欄を埋める問題です。具体的には、 (1) $x > 1$ の否定 (2) $x \le -2$ の否定 (3) 実数 $n$ は無理数である、の否定 (4) 自然数 $n...

論理否定不等式数の範囲
2025/6/22

$(a^{-\frac{3}{2}}b^{\frac{2}{5}})^{\frac{1}{4}}$ を計算し、選択肢の中から正しいものを選ぶ問題。ただし、$a, b$ は正の実数。

指数計算対数対数の性質
2025/6/22

与えられた命題が真であるか偽であるかを判断し、偽の場合は反例を答える問題です。 (1) $x = -2 \Rightarrow 3x = -6$ (2) $3x = -6 \Rightarrow x ...

命題論理条件文真偽反例
2025/6/22

$a$ を定数とする。関数 $f(x) = x^2 - 4ax + 4a$ ($0 \le x \le 2$)について、次の問いに答えよ。 (1) 最小値とそのときの $x$ の値を求めよ。 (2) ...

二次関数最大値最小値平方完成場合分け
2025/6/22

集合Aと集合Bが与えられたとき、それぞれの問題について、$A \cap B$ (AとBの共通部分)と $A \cup B$ (AとBの和集合)を求める問題です。

集合集合演算共通部分和集合
2025/6/22

自然公園が川によって東西のエリアに分かれており、鹿が生息している。毎年、東エリアの鹿の1/5が西エリアに移動し、西エリアの鹿の1/3が東エリアに移動する。長期間が経過した後、鹿の分布がどのようになるか...

線形代数連立方程式定常状態
2025/6/22

二次正方行列 $A$ の固有値を $\lambda_1, \lambda_2$ とする。以下の命題をケーリー・ハミルトンの定理 $A^2 - (tr A)A + (det A)I = O$ を用いて証...

線形代数行列固有値固有ベクトルケーリー・ハミルトンの定理対角化
2025/6/22

A地点から14km離れたB地点へ自転車で行く。A地点からP地点までは時速12km, P地点からB地点までは時速15kmで走り、全体で1時間かかった。A,P間の道のりを $x$ km, P,B間の道のり...

連立方程式距離速さ時間
2025/6/22