(2), (3), (4) の式をそれぞれ因数分解し、空欄を埋める問題です。代数学因数分解多項式2025/6/231. 問題の内容(2), (3), (4) の式をそれぞれ因数分解し、空欄を埋める問題です。2. 解き方の手順(2)x2+2x+1−y2=(x2+2x+1)−y2x^2+2x+1-y^2 = (x^2+2x+1)-y^2x2+2x+1−y2=(x2+2x+1)−y2=(x+1)2−y2= (x+1)^2 - y^2=(x+1)2−y2=(x+1+y)(x+1−y)= (x+1+y)(x+1-y)=(x+1+y)(x+1−y)=(x+y+1)(x−y+1)= (x+y+1)(x-y+1)=(x+y+1)(x−y+1)空欄イには x+y+1)(x−y+1x+y+1)(x-y+1x+y+1)(x−y+1 が入ります。(3)a2+ab−a+b−2=a2−a−2+ab+ba^2+ab-a+b-2 = a^2 - a - 2 + ab + ba2+ab−a+b−2=a2−a−2+ab+b=(a2−a−2)+(ab+b)= (a^2-a-2) + (ab+b)=(a2−a−2)+(ab+b)=(a+1)(a−2)+b(a+1)= (a+1)(a-2) + b(a+1)=(a+1)(a−2)+b(a+1)=(a+1)(a−2+b)= (a+1)(a-2+b)=(a+1)(a−2+b)=(a+1)(a+b−2)= (a+1)(a+b-2)=(a+1)(a+b−2)空欄ウには (a+1)(a+b−2)(a+1)(a+b-2)(a+1)(a+b−2) が入ります。(4)x2−xy−2y2+x−5y−2=x2+(−y+1)x−(2y2+5y+2)x^2 - xy - 2y^2 + x - 5y - 2 = x^2 + (-y+1)x - (2y^2+5y+2)x2−xy−2y2+x−5y−2=x2+(−y+1)x−(2y2+5y+2)=x2+(1−y)x−(2y+1)(y+2)= x^2 + (1-y)x - (2y+1)(y+2)=x2+(1−y)x−(2y+1)(y+2)=x2+(1−y)x+(−2y−1)(y+2)= x^2 + (1-y)x + (-2y-1)(y+2)=x2+(1−y)x+(−2y−1)(y+2)積が −(2y+1)(y+2)-(2y+1)(y+2)−(2y+1)(y+2)、和が 1−y1-y1−y となる2つの数を見つけます。これは y+2y+2y+2 と −2y−1-2y-1−2y−1 を利用します。x2+(y+2−(2y+1))x−(2y+1)(y+2)x^2 + (y+2 - (2y+1))x - (2y+1)(y+2)x2+(y+2−(2y+1))x−(2y+1)(y+2)x2+(y+2)x−(2y+1)x−(2y+1)(y+2)x^2 + (y+2)x - (2y+1)x - (2y+1)(y+2)x2+(y+2)x−(2y+1)x−(2y+1)(y+2)=(x+y+2)(x−(2y+1))= (x+y+2)(x - (2y+1))=(x+y+2)(x−(2y+1))=(x+y+2)(x−2y−1)= (x+y+2)(x-2y-1)=(x+y+2)(x−2y−1)空欄エには (x+y+2)(x−2y−1)(x+y+2)(x-2y-1)(x+y+2)(x−2y−1) が入ります。3. 最終的な答え(2) (x+y+1)(x−y+1)(x+y+1)(x-y+1)(x+y+1)(x−y+1)(3) (a+1)(a+b−2)(a+1)(a+b-2)(a+1)(a+b−2)(4) (x+y+2)(x−2y−1)(x+y+2)(x-2y-1)(x+y+2)(x−2y−1)