二次方程式 $2x^2 + 8x + 1 = 0$ の2つの解を $\alpha, \beta$ とするとき、$\frac{2}{\alpha}$ と $\frac{2}{\beta}$ を解とし、$x^2$ の係数が1である二次方程式を求めよ。
2025/6/23
1. 問題の内容
二次方程式 の2つの解を とするとき、 と を解とし、 の係数が1である二次方程式を求めよ。
2. 解き方の手順
まず、与えられた二次方程式 の解と係数の関係を求める。解と係数の関係より、
次に、求める二次方程式の解である と の和と積を計算する。
求める二次方程式を とすると、解と係数の関係から、
したがって、 となり、求める二次方程式は である。