## 問題の内容解析学定積分ウォリスの公式三角関数2025/6/23## 問題の内容以下の4つの定積分を計算する問題です。(1) ∫0π/2sin7x dx\int_{0}^{\pi/2} \sin^7 x \, dx∫0π/2sin7xdx(2) ∫0π/2cos8x dx\int_{0}^{\pi/2} \cos^8 x \, dx∫0π/2cos8xdx(3) ∫0π/2(1+cos2x)2 dx\int_{0}^{\pi/2} (1+\cos^2 x)^2 \, dx∫0π/2(1+cos2x)2dx(4) ∫0π/2(1+2sinx)4 dx\int_{0}^{\pi/2} (1+2\sin x)^4 \, dx∫0π/2(1+2sinx)4dx## 解き方の手順### (1) ∫0π/2sin7x dx\int_{0}^{\pi/2} \sin^7 x \, dx∫0π/2sin7xdxウォリスの公式を利用します。ウォリスの公式は以下の通りです。In=∫0π/2sinnx dx=∫0π/2cosnx dxI_n = \int_{0}^{\pi/2} \sin^n x \, dx = \int_{0}^{\pi/2} \cos^n x \, dxIn=∫0π/2sinnxdx=∫0π/2cosnxdxIn=n−1nIn−2I_n = \frac{n-1}{n}I_{n-2}In=nn−1In−2I0=∫0π/21 dx=π2I_0 = \int_{0}^{\pi/2} 1 \, dx = \frac{\pi}{2}I0=∫0π/21dx=2πI1=∫0π/2sinx dx=1I_1 = \int_{0}^{\pi/2} \sin x \, dx = 1I1=∫0π/2sinxdx=1よって、I7=67I5=6745I3=674523I1=674523⋅1=1635I_7 = \frac{6}{7}I_5 = \frac{6}{7}\frac{4}{5}I_3 = \frac{6}{7}\frac{4}{5}\frac{2}{3}I_1 = \frac{6}{7}\frac{4}{5}\frac{2}{3} \cdot 1 = \frac{16}{35}I7=76I5=7654I3=765432I1=765432⋅1=3516### (2) ∫0π/2cos8x dx\int_{0}^{\pi/2} \cos^8 x \, dx∫0π/2cos8xdx同様にウォリスの公式を利用します。I8=78I6=7856I4=785634I2=78563412I0=78563412⋅π2=35π256I_8 = \frac{7}{8}I_6 = \frac{7}{8}\frac{5}{6}I_4 = \frac{7}{8}\frac{5}{6}\frac{3}{4}I_2 = \frac{7}{8}\frac{5}{6}\frac{3}{4}\frac{1}{2}I_0 = \frac{7}{8}\frac{5}{6}\frac{3}{4}\frac{1}{2} \cdot \frac{\pi}{2} = \frac{35\pi}{256}I8=87I6=8765I4=876543I2=87654321I0=87654321⋅2π=25635π### (3) ∫0π/2(1+cos2x)2 dx\int_{0}^{\pi/2} (1+\cos^2 x)^2 \, dx∫0π/2(1+cos2x)2dx(1+cos2x)2=1+2cos2x+cos4x(1+\cos^2 x)^2 = 1+2\cos^2 x + \cos^4 x(1+cos2x)2=1+2cos2x+cos4x なので、∫0π/2(1+cos2x)2 dx=∫0π/2(1+2cos2x+cos4x) dx=∫0π/21 dx+2∫0π/2cos2x dx+∫0π/2cos4x dx\int_{0}^{\pi/2} (1+\cos^2 x)^2 \, dx = \int_{0}^{\pi/2} (1+2\cos^2 x + \cos^4 x) \, dx = \int_{0}^{\pi/2} 1 \, dx + 2\int_{0}^{\pi/2} \cos^2 x \, dx + \int_{0}^{\pi/2} \cos^4 x \, dx∫0π/2(1+cos2x)2dx=∫0π/2(1+2cos2x+cos4x)dx=∫0π/21dx+2∫0π/2cos2xdx+∫0π/2cos4xdx∫0π/21 dx=π2\int_{0}^{\pi/2} 1 \, dx = \frac{\pi}{2}∫0π/21dx=2π∫0π/2cos2x dx=12⋅π2=π4\int_{0}^{\pi/2} \cos^2 x \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}∫0π/2cos2xdx=21⋅2π=4π∫0π/2cos4x dx=34∫0π/2cos2x dx=34⋅π4=3π16\int_{0}^{\pi/2} \cos^4 x \, dx = \frac{3}{4} \int_{0}^{\pi/2} \cos^2 x \, dx = \frac{3}{4} \cdot \frac{\pi}{4} = \frac{3\pi}{16}∫0π/2cos4xdx=43∫0π/2cos2xdx=43⋅4π=163πよって、∫0π/2(1+cos2x)2 dx=π2+2⋅π4+3π16=8π16+8π16+3π16=19π16\int_{0}^{\pi/2} (1+\cos^2 x)^2 \, dx = \frac{\pi}{2} + 2\cdot \frac{\pi}{4} + \frac{3\pi}{16} = \frac{8\pi}{16} + \frac{8\pi}{16} + \frac{3\pi}{16} = \frac{19\pi}{16}∫0π/2(1+cos2x)2dx=2π+2⋅4π+163π=168π+168π+163π=1619π### (4) ∫0π/2(1+2sinx)4 dx\int_{0}^{\pi/2} (1+2\sin x)^4 \, dx∫0π/2(1+2sinx)4dx(1+2sinx)4=1+8sinx+24sin2x+32sin3x+16sin4x(1+2\sin x)^4 = 1 + 8\sin x + 24\sin^2 x + 32\sin^3 x + 16\sin^4 x(1+2sinx)4=1+8sinx+24sin2x+32sin3x+16sin4x∫0π/21 dx=π2\int_{0}^{\pi/2} 1 \, dx = \frac{\pi}{2}∫0π/21dx=2π∫0π/2sinx dx=1\int_{0}^{\pi/2} \sin x \, dx = 1∫0π/2sinxdx=1∫0π/2sin2x dx=12⋅π2=π4\int_{0}^{\pi/2} \sin^2 x \, dx = \frac{1}{2}\cdot \frac{\pi}{2} = \frac{\pi}{4}∫0π/2sin2xdx=21⋅2π=4π∫0π/2sin3x dx=23\int_{0}^{\pi/2} \sin^3 x \, dx = \frac{2}{3}∫0π/2sin3xdx=32∫0π/2sin4x dx=34∫0π/2sin2x dx=34⋅π4=3π16\int_{0}^{\pi/2} \sin^4 x \, dx = \frac{3}{4} \int_{0}^{\pi/2} \sin^2 x \, dx = \frac{3}{4} \cdot \frac{\pi}{4} = \frac{3\pi}{16}∫0π/2sin4xdx=43∫0π/2sin2xdx=43⋅4π=163πよって、∫0π/2(1+2sinx)4 dx=∫0π/2(1+8sinx+24sin2x+32sin3x+16sin4x) dx=π2+8+24⋅π4+32⋅23+16⋅3π16=π2+8+6π+643+3π=19π2+24+643=19π2+883=57π+1766\int_{0}^{\pi/2} (1+2\sin x)^4 \, dx = \int_{0}^{\pi/2} (1 + 8\sin x + 24\sin^2 x + 32\sin^3 x + 16\sin^4 x) \, dx = \frac{\pi}{2} + 8 + 24\cdot \frac{\pi}{4} + 32\cdot \frac{2}{3} + 16\cdot \frac{3\pi}{16} = \frac{\pi}{2} + 8 + 6\pi + \frac{64}{3} + 3\pi = \frac{19\pi}{2} + \frac{24+64}{3} = \frac{19\pi}{2} + \frac{88}{3} = \frac{57\pi+176}{6}∫0π/2(1+2sinx)4dx=∫0π/2(1+8sinx+24sin2x+32sin3x+16sin4x)dx=2π+8+24⋅4π+32⋅32+16⋅163π=2π+8+6π+364+3π=219π+324+64=219π+388=657π+176## 最終的な答え(1) 1635\frac{16}{35}3516(2) 35π256\frac{35\pi}{256}25635π(3) 19π16\frac{19\pi}{16}1619π(4) 57π+1766\frac{57\pi+176}{6}657π+176