6人の中から600mリレーの第1走者から第6走者までを選ぶ選び方が何通りあるかを求める問題です。

離散数学順列組み合わせ場合の数
2025/6/23

1. 問題の内容

6人の中から600mリレーの第1走者から第6走者までを選ぶ選び方が何通りあるかを求める問題です。

2. 解き方の手順

この問題は順列の問題です。6人の中から6人を選んで並べるので、順列の公式を使います。順列の公式は nPr=n!(nr)!nPr = \frac{n!}{(n-r)!} で表されます。ここで、nn は全体の人数、rr は選ぶ人数です。
今回の問題では、n=6n = 6r=6r = 6 なので、
6P6=6!(66)!=6!0!=6!1=6!6P6 = \frac{6!}{(6-6)!} = \frac{6!}{0!} = \frac{6!}{1} = 6!
6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720

3. 最終的な答え

720通り

「離散数学」の関連問題

8人を指定された人数構成のグループに分ける場合の数を求める問題です。 (1) A, B, C, Dの4つの組に、2人ずつ分ける。 (2) 2人ずつの4つの組に分ける。 (3) 3人、3人、2人の3つの...

組み合わせ順列場合の数二項係数
2025/6/23

男子5人(A, B, C, D, E)と女子3人(F, G, H)の計8人が1列に並ぶとき、以下の問いに答える。 (1) AとBが隣り合うような並び方は何通りあるか。 (2) AとBの間にちょうど2人...

順列組み合わせ場合の数数え上げ
2025/6/23

12人を指定された人数構成のグループに分ける場合の数を求める問題です。 (1) A, B, C の3つの組に、4人ずつ分ける。 (2) 4人ずつの3つのグループに分ける。 (3) 5人、4人、3人の3...

組み合わせ場合の数順列
2025/6/23

問題は、集合、場合の数、順列・組み合わせなどに関する10個の小問から構成されています。具体的には、集合の要素の個数を求めたり、さいころの目の出方、人の選び方、正の約数の総和、果物の買い方、文字列の作り...

場合の数組み合わせ順列集合約数円順列重複組み合わせ
2025/6/23

全体集合$U$を15以下の自然数全体の集合とし、部分集合$A = \{1, 2, 4, 7, 8, 9, 12, 15\}$、$B = \{1, 3, 5, 6, 8, 14\}$について、$n(A ...

集合集合演算補集合要素数
2025/6/23

互いに異なる6個の薬品を3つのグループに分ける方法の数を、以下の3つの場合にそれぞれ求める問題です。 (1) 1個、2個、3個のグループに分ける場合 (2) 1個、1個、4個のグループに分ける場合 (...

組み合わせ場合の数分割
2025/6/23

12人を指定された人数でグループ分けする方法の数を求める問題です。 (1) A, B, Cの3つの組に、4人ずつ分ける。 (2) 4人ずつの3つのグループに分ける。 (3) 5人, 4人, 3人の3つ...

組み合わせ場合の数順列
2025/6/23

順列 $nP_r$ の値を求める問題です。具体的には以下の値を計算します。 (1) $6P_3$ (2) $5P_1$ (3) $9P_6$ (4) $4P_4$ (5) $5!$ (6) $7!$

順列階乗組み合わせ円順列重複順列
2025/6/23

全体集合 $U$ が10より小さい自然数全体の集合、$A = \{2, 4, 6\}$、$B = \{1, 3, 4, 7\}$ であるとき、$\overline{A} \cap \overline{...

集合補集合共通部分
2025/6/23

5つの数字 (1, 2, 3, 4, 5) を使って4桁の整数を作ります。同じ数字を繰り返し使うことができます。 (1) 4桁の整数は全部で何個できますか? (2) 1122や2122のように、ちょう...

組み合わせ場合の数数列重複組み合わせ
2025/6/23