$\lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{n}{k^2 + 3kn + 2n^2}$ を求める問題です。解析学極限級数区分求積法部分分数分解積分2025/6/231. 問題の内容limn→∞∑k=n+12nnk2+3kn+2n2\lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{n}{k^2 + 3kn + 2n^2}limn→∞∑k=n+12nk2+3kn+2n2n を求める問題です。2. 解き方の手順まず、与えられた式を変形します。k2+3kn+2n2k^2 + 3kn + 2n^2k2+3kn+2n2 を因数分解すると、(k+n)(k+2n)(k+n)(k+2n)(k+n)(k+2n) となります。したがって、∑k=n+12nnk2+3kn+2n2=∑k=n+12nn(k+n)(k+2n)\sum_{k=n+1}^{2n} \frac{n}{k^2 + 3kn + 2n^2} = \sum_{k=n+1}^{2n} \frac{n}{(k+n)(k+2n)}∑k=n+12nk2+3kn+2n2n=∑k=n+12n(k+n)(k+2n)nとなります。ここで、n(k+n)(k+2n)\frac{n}{(k+n)(k+2n)}(k+n)(k+2n)n を部分分数分解すると、n(k+n)(k+2n)=1k+n−1k+2n\frac{n}{(k+n)(k+2n)} = \frac{1}{k+n} - \frac{1}{k+2n}(k+n)(k+2n)n=k+n1−k+2n1となります。よって、∑k=n+12nn(k+n)(k+2n)=∑k=n+12n(1k+n−1k+2n)\sum_{k=n+1}^{2n} \frac{n}{(k+n)(k+2n)} = \sum_{k=n+1}^{2n} (\frac{1}{k+n} - \frac{1}{k+2n})∑k=n+12n(k+n)(k+2n)n=∑k=n+12n(k+n1−k+2n1)この和を書き下すと、(12n+1−13n+1)+(12n+2−13n+2)+⋯+(13n−14n)(\frac{1}{2n+1} - \frac{1}{3n+1}) + (\frac{1}{2n+2} - \frac{1}{3n+2}) + \dots + (\frac{1}{3n} - \frac{1}{4n})(2n+11−3n+11)+(2n+21−3n+21)+⋯+(3n1−4n1)となります。これを整理すると、∑k=n+12n(1k+n−1k+2n)=∑k=n+12n1k+n−∑k=n+12n1k+2n\sum_{k=n+1}^{2n} (\frac{1}{k+n} - \frac{1}{k+2n}) = \sum_{k=n+1}^{2n} \frac{1}{k+n} - \sum_{k=n+1}^{2n} \frac{1}{k+2n}∑k=n+12n(k+n1−k+2n1)=∑k=n+12nk+n1−∑k=n+12nk+2n1=(12n+1+12n+2+⋯+13n)−(13n+1+13n+2+⋯+14n)= (\frac{1}{2n+1} + \frac{1}{2n+2} + \dots + \frac{1}{3n}) - (\frac{1}{3n+1} + \frac{1}{3n+2} + \dots + \frac{1}{4n})=(2n+11+2n+21+⋯+3n1)−(3n+11+3n+21+⋯+4n1)=∑k=2n+13n1k−∑k=3n+14n1k= \sum_{k=2n+1}^{3n} \frac{1}{k} - \sum_{k=3n+1}^{4n} \frac{1}{k}=∑k=2n+13nk1−∑k=3n+14nk1=∑k=2n+14n1k−2∑k=3n+14n1k= \sum_{k=2n+1}^{4n} \frac{1}{k} - 2\sum_{k=3n+1}^{4n} \frac{1}{k}=∑k=2n+14nk1−2∑k=3n+14nk1=∑k=2n+13n1k−∑k=3n+14n1k= \sum_{k=2n+1}^{3n} \frac{1}{k} - \sum_{k=3n+1}^{4n} \frac{1}{k}=∑k=2n+13nk1−∑k=3n+14nk1ここで、区分求積法を用います。limn→∞∑k=n+12nn(k+n)(k+2n)=limn→∞∑k=n+12n(1k+n−1k+2n)=limn→∞∑k=n+12n(1k+n−1k+2n)\lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{n}{(k+n)(k+2n)} = \lim_{n \to \infty} \sum_{k=n+1}^{2n} (\frac{1}{k+n} - \frac{1}{k+2n}) = \lim_{n \to \infty} \sum_{k=n+1}^{2n} (\frac{1}{k+n} - \frac{1}{k+2n})limn→∞∑k=n+12n(k+n)(k+2n)n=limn→∞∑k=n+12n(k+n1−k+2n1)=limn→∞∑k=n+12n(k+n1−k+2n1)limn→∞∑k=n+12n(1k+n−1k+2n)=limn→∞∑k=1n1k+2n−1k+3n=limn→∞∑k=1n(12+k/n−13+k/n)1n=∫0112+x−13+xdx=[log(2+x)−log(3+x)]01=log(34)−log(23)=log(98)\lim_{n \to \infty} \sum_{k=n+1}^{2n} (\frac{1}{k+n} - \frac{1}{k+2n}) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k+2n} - \frac{1}{k+3n} = \lim_{n \to \infty} \sum_{k=1}^{n} (\frac{1}{2+k/n} - \frac{1}{3+k/n})\frac{1}{n} = \int_{0}^{1} \frac{1}{2+x} - \frac{1}{3+x} dx = [log(2+x)-log(3+x)]_{0}^{1} = log(\frac{3}{4}) - log(\frac{2}{3}) = log(\frac{9}{8})limn→∞∑k=n+12n(k+n1−k+2n1)=limn→∞∑k=1nk+2n1−k+3n1=limn→∞∑k=1n(2+k/n1−3+k/n1)n1=∫012+x1−3+x1dx=[log(2+x)−log(3+x)]01=log(43)−log(32)=log(89).limn→∞∑k=2n+13n1k−∑k=3n+14n1k=limn→∞∑k=1n12n+k−13n+k=∫0112+x−13+xdx=[log(2+x)−log(3+x)]01=log(3)−log(4)−(log(2)−log(3))=log(3/4)−log(2/3)=log(9/8)\lim_{n \to \infty} \sum_{k=2n+1}^{3n} \frac{1}{k} - \sum_{k=3n+1}^{4n} \frac{1}{k}= \lim_{n \to \infty}\sum_{k=1}^{n} \frac{1}{2n+k} - \frac{1}{3n+k} = \int_{0}^{1} \frac{1}{2+x} - \frac{1}{3+x} dx = [log(2+x) - log(3+x)]_{0}^{1} = log(3)-log(4) - (log(2)-log(3)) = log(3/4)-log(2/3) = log(9/8)limn→∞∑k=2n+13nk1−∑k=3n+14nk1=limn→∞∑k=1n2n+k1−3n+k1=∫012+x1−3+x1dx=[log(2+x)−log(3+x)]01=log(3)−log(4)−(log(2)−log(3))=log(3/4)−log(2/3)=log(9/8)3. 最終的な答えlog98\log \frac{9}{8}log89