$x^2 = -72$ のとき、$x$ の値を求めなさい。ただし、$\pm$ の形で答える。

代数学二次方程式複素数平方根
2025/6/23

1. 問題の内容

x2=72x^2 = -72 のとき、xx の値を求めなさい。ただし、±\pm の形で答える。

2. 解き方の手順

まず、x2=72x^2 = -72 の両辺の平方根を取ります。
x=±72x = \pm \sqrt{-72}
次に、72\sqrt{-72} を簡単にします。72=721=362i=62i\sqrt{-72} = \sqrt{72} \cdot \sqrt{-1} = \sqrt{36 \cdot 2} \cdot i = 6\sqrt{2}i となります。ここで、ii は虚数単位で、i2=1i^2 = -1 です。
したがって、x=±62ix = \pm 6\sqrt{2}i となります。

3. 最終的な答え

x=±62ix = \pm 6\sqrt{2}i

「代数学」の関連問題

多項式 $f(x)$ を $x$ の2次式 $(x-a)^2$ で割ったときの商を $Q(x)$、余りを $bx+c$ とする。このとき、等式 $f(x) = (x-a)^2 Q(x) + bx + ...

多項式微分剰余の定理
2025/6/23

集合 $A = \{x | 0 < x < 2, x は実数\}$ と $B = \{x | 1 \leq x \leq 4, x は実数\}$ について、以下の集合を求める問題です。 (1) $A ...

集合集合演算共通部分和集合不等式
2025/6/23

次の3つの問題について、指定された条件を満たす定数 $m$ の値または値の範囲を求めます。 (1) 円 $x^2 + y^2 = 1$ と直線 $y = x + m$ が共有点をもつ。 (2) 円 $...

二次方程式直線判別式共有点接する
2025/6/23

命題「$x+y = 4 \implies x \leq 2$ または $y \leq 2$」の裏の命題を求め、その真偽を判定する問題です。

論理命題真偽判定不等式
2025/6/23

命題「$x^2 \geq 9 \Longrightarrow x \geq 3$」の逆の命題を選び、その真偽を判定する問題です。

命題論理真偽
2025/6/23

与えられた連立一次方程式を解く問題です。 $ \begin{cases} -4x - 3y = -19 \\ -5x - 5y = -35 \end{cases} $

連立一次方程式方程式代入法
2025/6/23

次の連立方程式を解きます。 $4x - 3y = -9$ $3x - 7y = 17$

連立方程式加減法一次方程式
2025/6/23

$x, y$ は実数であるとき、条件「$x \geq -2$ かつ $y > 3$」の否定を、選択肢①~④の中から選ぶ問題です。

論理命題不等式否定
2025/6/23

自然数 $x$ について、条件 $p$:「$x$ が 2 の倍数かつ 3 の倍数」が、条件 $q$:「$x$ が 12 の倍数」であるための必要条件、十分条件、必要十分条件のいずれかを答える問題です。

命題必要条件十分条件倍数
2025/6/23

$x, y$ は実数であるとする。条件 $p: x = -1$ は条件 $q: xy = -1$ であるための、必要条件、十分条件、必要十分条件、またはどれでもないかを問う問題。

必要条件十分条件命題不等式
2025/6/23