図に示された三角形において、角度が $110^\circ$ の外角を持つ三角形の、もう一つの角度(クエスチョンマークで示された角度)の大きさを求める問題です。

幾何学三角形内角外角角度
2025/6/23

1. 問題の内容

図に示された三角形において、角度が 110110^\circ の外角を持つ三角形の、もう一つの角度(クエスチョンマークで示された角度)の大きさを求める問題です。

2. 解き方の手順

まず、右側の小さな三角形について考えます。
三角形の内角の和は 180180^\circ なので、頂点Aの右側の角度と、底辺にある8080^\circの角度を足すと、残りの角度を求めることができます。
残りの角度は、180(30+80)=70180^\circ - (30^\circ + 80^\circ) = 70^\circとなります。
次に、三角形の外角の性質を利用します。外角は、その隣にない二つの内角の和に等しくなります。したがって、110110^\circ の外角を持つ三角形について、
外角の 110110^\circ は、求める角度(?)と、7070^\circ の内角の和に等しくなります。
したがって、求める角度は、
11070=40110^\circ - 70^\circ = 40^\circ
となります。

3. 最終的な答え

40°

「幾何学」の関連問題

1辺が10cmの正方形ABCDに内接する正方形EFGHについて、以下の問いに答える。ただし、正方形EFGHの頂点は正方形ABCDの頂点に重ならないものとする。 (1) AH = x (cm)とし、正方...

正方形面積三平方の定理二次関数最小値
2025/6/24

$\angle{A}$ が直角である直角二等辺三角形 $ABC$ の3つの辺 $BC$, $CA$, $AB$ を $2:1$ に内分する点を、それぞれ $L$, $M$, $N$ とするとき、$AL...

幾何三角形直角二等辺三角形ベクトル座標平面
2025/6/24

与えられた円と直線について、位置関係(交わる、接する、交わらない)を調べ、もし共有点があればその座標を求める。具体的には、以下の3つの問題がある。 (1) 円: $x^2 + y^2 = 10$、直線...

直線位置関係判別式連立方程式
2025/6/24

3点 $(1, 1)$, $(5, -1)$, $(-3, -7)$ を通る円の方程式を求める。

円の方程式座標平面連立方程式平方完成
2025/6/24

与えられた2つの方程式がどのような図形を表すかを答えます。どちらの方程式も $x^2$ と $y^2$ の係数が等しいので、円の方程式である可能性があります。円の方程式かどうかを判別するため、平方完成...

平方完成座標平面
2025/6/24

与えられた条件を満たす円の方程式を求める問題です。 (1) 中心が原点で半径が7の円の方程式を求めます。 (2) 中心が(5, -3)で半径が4の円の方程式を求めます。 (5) 2点(0, 1), (...

円の方程式座標平面半径中心
2025/6/24

点A(3, 2)と直線 $x + y + 1 = 0$ に関して対称な点Bの座標を求めます。

座標対称点直線中点直交連立方程式
2025/6/24

図の直角三角形ABCを用いて、$0 < x < 1$ のとき、次の等式を証明する問題です。 $\sin^{-1}x = \cos^{-1}\sqrt{1-x^2}$

三角関数逆三角関数直角三角形証明
2025/6/24

与えられた点と直線の距離を求める問題です。3つのケースがあります。 (1) 点(0, 0)と直線 $4x + 3y - 12 = 0$ (2) 点(2, 1)と直線 $x + 2y - 3 = 0$ ...

点と直線の距離座標平面公式
2025/6/24

四面体OABCと点Pについて、$10\vec{OP} + 5\vec{AP} + 9\vec{BP} + 8\vec{CP} = \vec{0}$ が成立している。 (1) 点Pがどのような位置にある...

ベクトル空間ベクトル四面体体積比内分点
2025/6/24