点$(-1, 4)$と直線$x + 2y + 3 = 0$の距離を求め、指定された形式(ア$\sqrt{イ}$)で答える問題です。

幾何学点と直線の距離距離の公式有理化
2025/6/23

1. 問題の内容

(1,4)(-1, 4)と直線x+2y+3=0x + 2y + 3 = 0の距離を求め、指定された形式(ア\sqrt{イ})で答える問題です。

2. 解き方の手順

(x0,y0)(x_0, y_0)と直線ax+by+c=0ax + by + c = 0の距離ddは、以下の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、x0=1x_0 = -1, y0=4y_0 = 4, a=1a = 1, b=2b = 2, c=3c = 3 です。これらの値を公式に代入すると、
d=1(1)+24+312+22d = \frac{|1 \cdot (-1) + 2 \cdot 4 + 3|}{\sqrt{1^2 + 2^2}}
d=1+8+31+4d = \frac{|-1 + 8 + 3|}{\sqrt{1 + 4}}
d=105d = \frac{|10|}{\sqrt{5}}
d=105d = \frac{10}{\sqrt{5}}
分母を有理化するために、分子と分母に5\sqrt{5}を掛けます。
d=1055d = \frac{10\sqrt{5}}{5}
d=25d = 2\sqrt{5}
よって、アは2、イは5となります。

3. 最終的な答え

ア:2
イ:5
252\sqrt{5}

「幾何学」の関連問題

三角形DEFの重心の位置ベクトルを、ベクトル$\vec{a}$, $\vec{b}$, $\vec{c}$で表す。ただし、点D, E, Fの位置ベクトルがそれぞれ$\vec{a}$, $\vec{b}...

ベクトル重心位置ベクトル三角形
2025/6/25

正方形ABCDにおいて、各頂点からそれぞれ長さ$a$、長さ$b$の点を取り、隣り合う点同士を結んでできる図形(影のついた部分)の面積を、$a$と$b$を用いて表す。ただし、正方形ABCDの一辺の長さは...

図形面積正方形三角形代数
2025/6/25

三角形ABCにおいて、角A, B, Cの大きさをそれぞれA, B, Cとする。$\tan A, \tan B, \tan C$はすべて整数で、$A < B < C$である。 (1) $\tan(B+C...

三角比三角形角度整数解三角関数の性質
2025/6/25

図のように、点 A(4, 9), 点 B(12, -3) が与えられており、y軸上に点 E をとる。線分の長さの和 AE + EB が最小になるときの三角形 AEB の面積を求める。ただし、座標軸の1...

座標平面三角形の面積点と直線の距離対称点
2025/6/25

直線 $l$ の式が $y = -\frac{3}{2}x + 15$ であり、直線 $l$ 上の点A, B の $x$ 座標がそれぞれ 4, 12 である。また、直線 $m$ は直線 $l$ に平行...

直線平行y切片一次関数
2025/6/25

直線 $l$ の式が $y = -\frac{3}{2}x + 15$ で与えられており、直線 $l$ 上の点A, Bの $x$ 座標がそれぞれ4, 12である。直線 $m$ は直線 $l$ に平行で...

直線平行一次関数座標
2025/6/25

はい、承知しました。画像の問題を解いていきます。

円周角中心角接線四角形角度
2025/6/25

下の図において、$\theta$ の値を求める問題です。APは円の接線であり、点Sは接点です(Sは図には描かれていませんが、恐らく接点のことを指していると思われます)。$\angle Q = 29^\...

接線円周角の定理接弦定理内接四角形角度
2025/6/25

## 1. 問題の内容

接線幾何学的性質長さ
2025/6/25

与えられた円の方程式 $x^2 + y^2 - 6x + 10y + 16 = 0$ を標準形に変形し、円の中心と半径を求める問題です。

円の方程式標準形平方完成
2025/6/25