与えられた問題は、総和 $\sum_{i=0}^{k} 3^i$ を計算することです。これは、初項1、公比3、項数k+1の等比数列の和を求める問題です。

代数学等比数列級数数列の和指数
2025/6/24

1. 問題の内容

与えられた問題は、総和 i=0k3i\sum_{i=0}^{k} 3^i を計算することです。これは、初項1、公比3、項数k+1の等比数列の和を求める問題です。

2. 解き方の手順

等比数列の和の公式を使います。初項を aa、公比を rr、項数を nn とすると、等比数列の和 SnS_n は次のように表されます。
Sn=a(rn1)r1S_n = \frac{a(r^n - 1)}{r - 1}
この問題では、a=1a=1, r=3r=3, n=k+1n=k+1 です。したがって、
Sk+1=1(3k+11)31S_{k+1} = \frac{1(3^{k+1} - 1)}{3 - 1}
Sk+1=3k+112S_{k+1} = \frac{3^{k+1} - 1}{2}

3. 最終的な答え

3k+112\frac{3^{k+1} - 1}{2}

「代数学」の関連問題

まず、3つの問題があります。 (210): (1) 2次関数 $y = ax^2 + bx + 3$ が点 $(1,6)$, $(2,5)$ を通るとき、$a,b$ の値を求める。 (2) 放物線 $...

二次関数二次方程式放物線グラフ
2025/6/24

等差数列 $\{a_n\}$ において、第2項が4、第10項が28であるとき、初項と公差を求め、さらに58が第何項かを求める。

等差数列数列一般項連立方程式
2025/6/24

与えられた数式 $5(\sqrt{3}+\sqrt{5})(3\sqrt{3}-\sqrt{5})$ を計算し、結果を求める。

数式計算平方根展開
2025/6/24

$(5\sqrt{2} - 4\sqrt{3})^2$ を計算する問題です。

式の計算平方根二項展開有理化
2025/6/24

与えられた3次式を因数分解し、空欄を埋める問題です。解答の数値は小さい順に記述し、$x$ から引く値を $\alpha, \beta, \gamma$ としたとき、$\alpha \le \beta ...

因数分解多項式三次式
2025/6/24

与えられた3次式を因数分解し、空欄を埋める問題です。係数は整数で、因数分解の結果は $(x - \alpha)(x - \beta)(x - \gamma)$ の形になり、$\alpha \le \b...

因数分解3次式多項式組み立て除法整数解
2025/6/24

与えられた2つの3次式を因数分解し、空欄を埋める問題です。 (1) $x^3 - 6x^2 + 11x - 6$ (2) $x^3 + 10x^2 + 31x + 30$

因数分解3次式多項式
2025/6/24

与えられた数式の値を計算します。数式は $\sqrt{8 - 2\sqrt{18 + \sqrt{32}}}$ です。

根号平方根数式の計算
2025/6/24

2次関数 $y = 2x^2 + 4ax$ ($0 \leqq x \leqq 2$) について、最小値と最大値を求め、そのときの $x$ の値を求める問題です。

二次関数最大値最小値平方完成場合分け
2025/6/24

2次関数 $y = 2x^2 + 4ax$ ($0 \leq x \leq 2$) について、最小値とそのときの $x$ の値を求め、次に最大値とそのときの $x$ の値を求める問題です。

二次関数最大値最小値平方完成場合分け
2025/6/24