次の和 $S$ を求めよ。 $S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + 7 \cdot 3^3 + \dots + (2n-1) \cdot 3^{n-1}$解析学級数等比数列和の計算2025/6/241. 問題の内容次の和 SSS を求めよ。S=1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + 7 \cdot 3^3 + \dots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−12. 解き方の手順まず、SSS を書き下します。S=1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−1S = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + 7 \cdot 3^3 + \dots + (2n-1) \cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−1次に、両辺を3倍します。3S=1⋅3+3⋅32+5⋅33+7⋅34+⋯+(2n−1)⋅3n3S = 1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + 7 \cdot 3^4 + \dots + (2n-1) \cdot 3^{n}3S=1⋅3+3⋅32+5⋅33+7⋅34+⋯+(2n−1)⋅3nSSS から 3S3S3S を引きます。S−3S=(1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−1)−(1⋅3+3⋅32+5⋅33+7⋅34+⋯+(2n−1)⋅3n)S - 3S = (1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + 7 \cdot 3^3 + \dots + (2n-1) \cdot 3^{n-1}) - (1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + 7 \cdot 3^4 + \dots + (2n-1) \cdot 3^{n})S−3S=(1⋅1+3⋅3+5⋅32+7⋅33+⋯+(2n−1)⋅3n−1)−(1⋅3+3⋅32+5⋅33+7⋅34+⋯+(2n−1)⋅3n)−2S=1+2⋅3+2⋅32+2⋅33+⋯+2⋅3n−1−(2n−1)⋅3n-2S = 1 + 2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3 + \dots + 2 \cdot 3^{n-1} - (2n-1) \cdot 3^n−2S=1+2⋅3+2⋅32+2⋅33+⋯+2⋅3n−1−(2n−1)⋅3n−2S=1+2(3+32+33+⋯+3n−1)−(2n−1)⋅3n-2S = 1 + 2(3 + 3^2 + 3^3 + \dots + 3^{n-1}) - (2n-1) \cdot 3^n−2S=1+2(3+32+33+⋯+3n−1)−(2n−1)⋅3nここで、等比数列の和の公式を使います。3+32+33+⋯+3n−1=3(3n−1−1)3−1=3(3n−1−1)23 + 3^2 + 3^3 + \dots + 3^{n-1} = \frac{3(3^{n-1} - 1)}{3-1} = \frac{3(3^{n-1} - 1)}{2}3+32+33+⋯+3n−1=3−13(3n−1−1)=23(3n−1−1)これを代入します。−2S=1+2⋅3(3n−1−1)2−(2n−1)⋅3n-2S = 1 + 2 \cdot \frac{3(3^{n-1} - 1)}{2} - (2n-1) \cdot 3^n−2S=1+2⋅23(3n−1−1)−(2n−1)⋅3n−2S=1+3(3n−1−1)−(2n−1)⋅3n-2S = 1 + 3(3^{n-1} - 1) - (2n-1) \cdot 3^n−2S=1+3(3n−1−1)−(2n−1)⋅3n−2S=1+3n−3−(2n−1)⋅3n-2S = 1 + 3^n - 3 - (2n-1) \cdot 3^n−2S=1+3n−3−(2n−1)⋅3n−2S=3n−2−(2n−1)⋅3n-2S = 3^n - 2 - (2n-1) \cdot 3^n−2S=3n−2−(2n−1)⋅3n−2S=3n−2−2n⋅3n+3n-2S = 3^n - 2 - 2n \cdot 3^n + 3^n−2S=3n−2−2n⋅3n+3n−2S=2⋅3n−2−2n⋅3n-2S = 2 \cdot 3^n - 2 - 2n \cdot 3^n−2S=2⋅3n−2−2n⋅3n−2S=2(3n−1−n⋅3n)-2S = 2(3^n - 1 - n \cdot 3^n)−2S=2(3n−1−n⋅3n)S=−(3n−1−n⋅3n)S = - (3^n - 1 - n \cdot 3^n)S=−(3n−1−n⋅3n)S=n⋅3n−3n+1S = n \cdot 3^n - 3^n + 1S=n⋅3n−3n+1S=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+13. 最終的な答えS=(n−1)3n+1S = (n-1)3^n + 1S=(n−1)3n+1