与えられた数 $-7i$, $1.8$, $3 + i$, $\frac{2}{3}$ を、虚数、実数、純虚数に分類する問題です。それぞれの種類に属する数をカンマ区切りで答えます。

その他複素数実数虚数純虚数分類
2025/6/24

1. 問題の内容

与えられた数 7i-7i, 1.81.8, 3+i3 + i, 23\frac{2}{3} を、虚数、実数、純虚数に分類する問題です。それぞれの種類に属する数をカンマ区切りで答えます。

2. 解き方の手順

* **実数:** 虚数単位 ii を含まない数です。
* 1.81.8
* 23\frac{2}{3}
* **虚数:** a+bia + bi (ただし、b0b \neq 0) の形で表される数です。
* 3+i3 + i
* 7i-7i
* **純虚数:** bibi (ただし、b0b \neq 0) の形で表される数です。実数部分が0の虚数です。
* 7i-7i
上記の分類に基づき、問題の条件「それぞれ1回ずつしか用いることはできません」を満たすように調整します。 7i-7i は虚数と純虚数の両方に該当しますが、純虚数として分類します。したがって、虚数は 3+i3+i になります。

3. 最終的な答え

虚数:3+i3+i
実数:1.8,231.8, \frac{2}{3}
純虚数:7i-7i

「その他」の関連問題

次の値を求めよ。 (1) $\sin 24^\circ \cos 58^\circ - \sin 32^\circ \cos 66^\circ$ (2) $\sin 40^\circ \cos 50^...

三角関数三角関数の加法定理三角関数の相互関係
2025/6/24

全体集合$U$を実数全体とし、その部分集合$A = \{x | 3 \le x \le 7\}$、$B = \{x | 5 < x < 10\}$が与えられたとき、以下の集合を求める。 (1) $A ...

集合集合演算ド・モルガンの法則数直線
2025/6/24

与えられた4つの文章を、全称記号($\forall$)や存在記号($\exists$)を用いて数式で表現する。

論理集合全称記号存在記号数式表現
2025/6/24

以下の4つの命題の真偽を判定します。 (1) 任意の自然数 $x$ に対して、ある自然数 $y$ が存在し、$y > x$ が成り立つ。 (2) ある自然数 $x$ が存在し、任意の自然数 $y$ に...

命題真偽判定論理自然数実数
2025/6/24

与えられた表の規則性を見つけ、11回目の行における①から⑤に当てはまるものを答えます。①はD,C,B,Aの値を2進数4桁で表現したもの、②はXの値、③はYの値、④はZの値、⑤は「XをYの棒に入れる。た...

規則性2進数論理
2025/6/24

与えられた3つの命題について、それぞれ真偽を判断する必要がある。 (2) $x \leq -2$ (3) 実数$n$は有理数である。 (4) 自然数$n$は5で割り切れない数である。

命題真偽論理不等式実数有理数自然数割り算
2025/6/24

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ が与えられている。 (1) 3の倍数の集合 $A$ を求めよ。 (2) 12の約数の集合 $B$ を求めよ。た...

集合集合演算部分集合補集合約数倍数
2025/6/24

アッカーマン関数 $A(m, n)$ について、$A(2, 1) = 5$ となることを、途中式を書いて示す問題です。ただし、$A(2, 0) = 3$ と $A(1, 1) = 3$ であることは使...

アッカーマン関数再帰関数関数の評価
2025/6/24

与えられた4つの関数 $x$ について、それぞれの関数を書き出す問題です。 (1) $x = at^2 + bt + c + d$ (2) $x = a\sin(bt+c) + d\cos(bt+c)...

関数数式指数関数対数関数三角関数パラメータ
2025/6/24

$x$, $y$ は実数とする。 条件「$x > 0$ または $y \le 1$」の否定を、選択肢の中から選ぶ問題。

論理否定条件
2025/6/24