定積分 $\int_{-1}^{2} |2x^2 - x - 1| dx$ を、絶対値を用いない定積分の式に書き換え、その値を求める。解析学定積分絶対値積分計算2025/6/251. 問題の内容定積分 ∫−12∣2x2−x−1∣dx\int_{-1}^{2} |2x^2 - x - 1| dx∫−12∣2x2−x−1∣dx を、絶対値を用いない定積分の式に書き換え、その値を求める。2. 解き方の手順まず、2x2−x−1=02x^2 - x - 1 = 02x2−x−1=0 となる xxx を求めます。2x2−x−1=(2x+1)(x−1)=02x^2 - x - 1 = (2x + 1)(x - 1) = 02x2−x−1=(2x+1)(x−1)=0よって、x=−12,1x = -\frac{1}{2}, 1x=−21,1次に、区間 [−1,2][-1, 2][−1,2] を x=−12,1x = -\frac{1}{2}, 1x=−21,1 によって分割し、各区間で 2x2−x−12x^2 - x - 12x2−x−1 の符号を調べます。* −1≤x<−12-1 \leq x < -\frac{1}{2}−1≤x<−21 のとき、2x2−x−1>02x^2 - x - 1 > 02x2−x−1>0* −12<x<1-\frac{1}{2} < x < 1−21<x<1 のとき、2x2−x−1<02x^2 - x - 1 < 02x2−x−1<0* 1<x≤21 < x \leq 21<x≤2 のとき、2x2−x−1>02x^2 - x - 1 > 02x2−x−1>0したがって、∣2x2−x−1∣={2x2−x−1−1≤x≤−12−(2x2−x−1)−12≤x≤12x2−x−11≤x≤2|2x^2 - x - 1| = \begin{cases} 2x^2 - x - 1 & -1 \leq x \leq -\frac{1}{2} \\ -(2x^2 - x - 1) & -\frac{1}{2} \leq x \leq 1 \\ 2x^2 - x - 1 & 1 \leq x \leq 2 \end{cases}∣2x2−x−1∣=⎩⎨⎧2x2−x−1−(2x2−x−1)2x2−x−1−1≤x≤−21−21≤x≤11≤x≤2よって、与えられた定積分は次のように書き換えられます。∫−12∣2x2−x−1∣dx=∫−1−12(2x2−x−1)dx+∫−121−(2x2−x−1)dx+∫12(2x2−x−1)dx\int_{-1}^{2} |2x^2 - x - 1| dx = \int_{-1}^{-\frac{1}{2}} (2x^2 - x - 1) dx + \int_{-\frac{1}{2}}^{1} -(2x^2 - x - 1) dx + \int_{1}^{2} (2x^2 - x - 1) dx∫−12∣2x2−x−1∣dx=∫−1−21(2x2−x−1)dx+∫−211−(2x2−x−1)dx+∫12(2x2−x−1)dxそれぞれの積分を計算します。∫(2x2−x−1)dx=23x3−12x2−x+C\int (2x^2 - x - 1) dx = \frac{2}{3}x^3 - \frac{1}{2}x^2 - x + C∫(2x2−x−1)dx=32x3−21x2−x+C∫−1−12(2x2−x−1)dx=[23x3−12x2−x]−1−12=(23(−18)−12(14)−(−12))−(23(−1)−12(1)−(−1))=(−112−18+12)−(−23−12+1)=(−2+3−1224)−(−4−3+66)=724−(−16)=724+424=1124\int_{-1}^{-\frac{1}{2}} (2x^2 - x - 1) dx = [\frac{2}{3}x^3 - \frac{1}{2}x^2 - x]_{-1}^{-\frac{1}{2}} = (\frac{2}{3}(-\frac{1}{8}) - \frac{1}{2}(\frac{1}{4}) - (-\frac{1}{2})) - (\frac{2}{3}(-1) - \frac{1}{2}(1) - (-1)) = (-\frac{1}{12} - \frac{1}{8} + \frac{1}{2}) - (-\frac{2}{3} - \frac{1}{2} + 1) = (-\frac{2+3-12}{24}) - (\frac{-4-3+6}{6}) = \frac{7}{24} - (-\frac{1}{6}) = \frac{7}{24} + \frac{4}{24} = \frac{11}{24}∫−1−21(2x2−x−1)dx=[32x3−21x2−x]−1−21=(32(−81)−21(41)−(−21))−(32(−1)−21(1)−(−1))=(−121−81+21)−(−32−21+1)=(−242+3−12)−(6−4−3+6)=247−(−61)=247+244=2411∫−121−(2x2−x−1)dx=−[23x3−12x2−x]−121=−[(23−12−1)−(23(−18)−12(14)−(−12))]=−[(4−3−66)−(−112−18+12)]=−[−56−(−2−3+1224)]=−[−56−724]=−[−20+724]=2724=98\int_{-\frac{1}{2}}^{1} -(2x^2 - x - 1) dx = -[\frac{2}{3}x^3 - \frac{1}{2}x^2 - x]_{-\frac{1}{2}}^{1} = -[(\frac{2}{3} - \frac{1}{2} - 1) - (\frac{2}{3}(-\frac{1}{8}) - \frac{1}{2}(\frac{1}{4}) - (-\frac{1}{2}))] = -[(\frac{4-3-6}{6}) - (-\frac{1}{12} - \frac{1}{8} + \frac{1}{2})] = -[-\frac{5}{6} - (\frac{-2-3+12}{24})] = -[-\frac{5}{6} - \frac{7}{24}] = -[-\frac{20+7}{24}] = \frac{27}{24} = \frac{9}{8}∫−211−(2x2−x−1)dx=−[32x3−21x2−x]−211=−[(32−21−1)−(32(−81)−21(41)−(−21))]=−[(64−3−6)−(−121−81+21)]=−[−65−(24−2−3+12)]=−[−65−247]=−[−2420+7]=2427=89∫12(2x2−x−1)dx=[23x3−12x2−x]12=(23(8)−12(4)−2)−(23−12−1)=(163−2−2)−(4−3−66)=163−4−(−56)=32−24+56=136\int_{1}^{2} (2x^2 - x - 1) dx = [\frac{2}{3}x^3 - \frac{1}{2}x^2 - x]_{1}^{2} = (\frac{2}{3}(8) - \frac{1}{2}(4) - 2) - (\frac{2}{3} - \frac{1}{2} - 1) = (\frac{16}{3} - 2 - 2) - (\frac{4-3-6}{6}) = \frac{16}{3} - 4 - (-\frac{5}{6}) = \frac{32-24+5}{6} = \frac{13}{6}∫12(2x2−x−1)dx=[32x3−21x2−x]12=(32(8)−21(4)−2)−(32−21−1)=(316−2−2)−(64−3−6)=316−4−(−65)=632−24+5=613∫−12∣2x2−x−1∣dx=1124+98+136=11+27+5224=9024=154\int_{-1}^{2} |2x^2 - x - 1| dx = \frac{11}{24} + \frac{9}{8} + \frac{13}{6} = \frac{11 + 27 + 52}{24} = \frac{90}{24} = \frac{15}{4}∫−12∣2x2−x−1∣dx=2411+89+613=2411+27+52=2490=4153. 最終的な答え154\frac{15}{4}415