二次式 $x^2 - 4x + 2$ を因数分解してください。

代数学二次方程式因数分解解の公式平方根
2025/6/25

1. 問題の内容

二次式 x24x+2x^2 - 4x + 2 を因数分解してください。

2. 解き方の手順

この二次式は、通常の因数分解の公式((x+a)(x+b)(x+a)(x+b)の形に分解する)では整数解が見つからないため、解の公式を利用します。
二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、解の公式
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
で求められます。
今回の問題では、a=1a=1, b=4b=-4, c=2c=2 なので、
x=(4)±(4)24(1)(2)2(1)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(2)}}{2(1)}
x=4±1682x = \frac{4 \pm \sqrt{16 - 8}}{2}
x=4±82x = \frac{4 \pm \sqrt{8}}{2}
x=4±222x = \frac{4 \pm 2\sqrt{2}}{2}
x=2±2x = 2 \pm \sqrt{2}
よって、解は x=2+2x = 2 + \sqrt{2}x=22x = 2 - \sqrt{2} となります。
因数分解の形に直すと、
(x(2+2))(x(22))(x - (2 + \sqrt{2}))(x - (2 - \sqrt{2}))
=(x22)(x2+2)= (x - 2 - \sqrt{2})(x - 2 + \sqrt{2})

3. 最終的な答え

(x22)(x2+2)(x - 2 - \sqrt{2})(x - 2 + \sqrt{2})
または
(x(2+2))(x(22))(x - (2 + \sqrt{2}))(x - (2 - \sqrt{2}))

「代数学」の関連問題

二次式 $x^2 - 4x + 2$ を因数分解せよ。

因数分解二次式平方完成
2025/6/25

2次方程式 $-x^2 + 5x + 8 = 0$ の2つの解を$\alpha$, $\beta$とするとき、$\alpha + \beta$と$\alpha \beta$の値を求める。

二次方程式解と係数の関係解法
2025/6/25

2次方程式 $3x^2 + kx + 12 = 0$ の1つの解が他の解の4倍であるとき、定数 $k$ の値と2つの解を求める。また、$k = -15$ のときの解を求める。

二次方程式解と係数の関係解の比率
2025/6/25

2次方程式 $2x^2 + 6x + 1 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha + \beta$ および $\alpha \beta$ の値を求めます。

二次方程式解と係数の関係解の和解の積
2025/6/25

2次方程式 $3x^2 + 6x + 1 = 0$ の2つの解を$\alpha$、$\beta$とするとき、$\alpha + \beta$と$\alpha \beta$の値を求める問題です。

二次方程式解と係数の関係
2025/6/25

与えられた式 $(2\sqrt{5} + \sqrt{3})^2 - (2\sqrt{5} - \sqrt{3})^2$ を計算して簡略化します。

式の計算平方根展開因数分解数と式
2025/6/25

2次方程式 $-x^2 + 4x + 3 = 0$ の2つの解を $\alpha$, $\beta$ とするとき、$\frac{1}{\alpha} + \frac{1}{\beta}$ の値を求めよ...

二次方程式解と係数の関係解の逆数の和
2025/6/25

2次方程式 $2x^2 + 4x + 5 = 0$ の2つの解を$\alpha$、$\beta$とするとき、$\alpha^2 + \beta^2$ の値を求めよ。

二次方程式解と係数の関係解の二乗和
2025/6/25

与えられた式 $(3x+2)(9x^2-6x+4)$ を展開せよ。

式の展開因数分解多項式
2025/6/25

数列 $\{a_n\}$ が与えられており、$a_1 = 2$、$a_{n+1} = a_n - 3n + 1$ (n = 1, 2, 3, ...)とする。 (1) $a_2$ と $a_3$ を求...

数列漸化式シグマ
2025/6/25