離散数学
グラフ理論、組合せ論、論理学などの離散数学に関する問題
このカテゴリーの問題
問題は、集合の等式 $A \cap B = \overline{ \overline{A} \cup \overline{B}}$ が成り立つことを、ベン図を用いて確認することです。
集合論ベン図補集合論理
2025/4/13
全体集合 $U = \{1, 2, 3, 4, 5, 6\}$ の部分集合 $A = \{1, 2, 3\}$ と $B = \{3, 6\}$ について、以下の集合を求める。 (1) $\overl...
集合集合演算補集合共通部分和集合
2025/4/13
全体集合 $U = \{1, 2, 3, 4, 5, 6\}$ と、その部分集合 $A = \{1, 2, 3\}$ および $B = \{3, 6\}$ が与えられたとき、以下の集合を求める問題です...
集合補集合共通部分和集合
2025/4/13
集合 $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8\}$, $C = \{1, 3\}$ について、次の集合を求めます。 (1) $A \cap B...
集合集合演算共通部分和集合
2025/4/13
全体集合 $U = \{1, 2, 3, 4, 5, 6\}$ と、その部分集合 $A = \{1, 2, 3\}$、$B = \{3, 6\}$ が与えられています。以下の集合を求める問題です。 (...
集合集合演算部分集合補集合共通部分和集合
2025/4/13
画像に掲載されている数学の問題を解きます。内容は以下の通りです。 * 練習1:正の奇数全体の集合をAとするとき、5, 6, -3がAに含まれるか(∈)含まれないか(∉)を判定する。 * 練習2...
集合部分集合要素包含関係
2025/4/13
36番は円順列の問題で、(1)は色の異なる8個の玉の円順列の総数を、(2)は7か国の首相が円卓会議を行う場合の着席方法の総数を求めます。 50番は組み合わせ($_nC_r$)の値を求める問題です。
順列組み合わせ円順列二項係数場合の数
2025/4/13
A, A, B, C, D, E の6個の文字を横一列に並べる。 (1) 並べ方は全部で何通りあるか。 (2) Aが左端にないような並べ方は何通りあるか。 (3) Aが左端になく、かつ E が右端にな...
順列組み合わせ場合の数数え上げ
2025/4/13
全体集合 $U$ の部分集合 $A$, $B$ について、$n(U) = 40$, $n(A) = 23$, $n(B) = 15$, $n(A \cap B) = 3$ であるとき、以下の集合の要素...
集合補集合要素数
2025/4/13
問題文は、集合$A$と集合$B$の補集合である$\overline{A}$と$\overline{B}$を用いて、$\overline{A \cup B} = \overline{A} \cap \o...
集合論ド・モルガンの法則集合の演算証明
2025/4/13