正十角形について以下の数を求める問題です。 (1) 3個の頂点を結んでできる三角形の個数 (2) 4個の頂点を結んでできる四角形の個数 (3) 2個の頂点を結ぶ線分の本数 (4) 対角線の本数

幾何学組み合わせ多角形頂点線分対角線
2025/6/25

1. 問題の内容

正十角形について以下の数を求める問題です。
(1) 3個の頂点を結んでできる三角形の個数
(2) 4個の頂点を結んでできる四角形の個数
(3) 2個の頂点を結ぶ線分の本数
(4) 対角線の本数

2. 解き方の手順

(1) 正十角形の10個の頂点から3個を選ぶ組み合わせの数を求めます。これは組み合わせの公式 nCr=n!r!(nr)!_{n}C_{r} = \frac{n!}{r!(n-r)!} を用いて計算できます。
10C3=10!3!7!=10×9×83×2×1=10×3×4=120_{10}C_{3} = \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 10 \times 3 \times 4 = 120
(2) 正十角形の10個の頂点から4個を選ぶ組み合わせの数を求めます。
10C4=10!4!6!=10×9×8×74×3×2×1=10×3×7=210_{10}C_{4} = \frac{10!}{4!6!} = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 10 \times 3 \times 7 = 210
(3) 正十角形の10個の頂点から2個を選ぶ組み合わせの数を求めます。これは全ての線分の数になります。
10C2=10!2!8!=10×92×1=5×9=45_{10}C_{2} = \frac{10!}{2!8!} = \frac{10 \times 9}{2 \times 1} = 5 \times 9 = 45
(4) 対角線の数は、全ての線分の数から辺の数を引いたものです。正十角形の辺の数は10です。
対角線の数 = 全ての線分の数 - 辺の数 = 45 - 10 = 35

3. 最終的な答え

(1) 120個
(2) 210個
(3) 45本
(4) 35本

「幾何学」の関連問題

木の根元から50m離れた地点から木の先端を見上げたところ、見上げ角が18°であった。目の高さが1.5mのとき、木の高さは何mか求める問題です。答えは小数第1位まで求めます。

三角比tan高さ角度
2025/6/26

問題は、$0 \le \theta < 2\pi$ の範囲で、以下の三角関数の方程式と不等式を解くことです。 (1) $\sin \theta = \frac{\sqrt{3}}{2}$ (2) $2...

三角関数三角方程式三角不等式単位円
2025/6/26

$\theta$ の動径が第4象限にあり、$\sin \theta = -\frac{1}{3}$ のとき、$\cos \theta$ と $\tan \theta$ の値を求める。

三角関数三角比象限
2025/6/26

問題は、与えられた三角関数の符号の条件を満たす角$\theta$の動径が、どの象限にあるかを求める問題です。 (1) $\sin \theta < 0$ かつ $\cos \theta > 0$ (2...

三角関数三角比象限角度
2025/6/26

(1)正四角錐の5つの面を、5色の絵の具をすべて使って塗り分ける方法は何通りあるか。 (2)立方体の6つの面を、6色の絵の具をすべて使って塗り分ける方法は何通りあるか。

場合の数順列円順列立方体正四角錐塗り分け
2025/6/26

問題27は、図に含まれる長方形の個数と、正十角形の頂点から作られる三角形に関する問題を扱っています。 (1) 右の図に含まれる長方形の総数を求めます。 (2) 正十角形ABCDEFGHIJの3つの頂点...

組み合わせ長方形正多角形三角形場合の数
2025/6/26

この問題は、二つのパートに分かれています。 パート1(演習10-1)では、与えられたベクトルの組について、ベクトル積を計算します。 パート2(演習10-2)では、与えられたベクトルの組について、ベクト...

ベクトルベクトル積内積外積ベクトル解析
2025/6/26

「三角比の表」を利用して、次の三角関数の値を求めよ。 (1) $\sin 60^\circ$ (2) $\cos 145^\circ$ (3) $\sin \frac{7}{6}\pi$ (4) $\...

三角比三角関数角度変換sincos
2025/6/26

正八角形の3つの頂点を選んで三角形を作るとき、以下の数を求めます。 (1) 正八角形と1辺だけを共有する三角形の個数 (2) 正八角形と2辺を共有する三角形の個数 (3) 正八角形と1辺も共有しない三...

多角形組み合わせ三角形図形
2025/6/26

曲線 $5x^2 + 2xy + y^2 = 16$ で囲まれた部分の面積 $S$ を求めよ。

楕円面積回転積分
2025/6/25