$a > 0$ とする。サイクロイド $x = a(\theta - \sin\theta)$, $y = a(1-\cos\theta)$ $(0 \le \theta \le 2\pi)$ と $x$ 軸で囲まれた部分の面積 $S$ を求めよ。
2025/6/26
1. 問題の内容
とする。サイクロイド , と 軸で囲まれた部分の面積 を求めよ。
2. 解き方の手順
サイクロイドと 軸で囲まれた部分の面積 は、積分を用いて求めることができます。
まず、 であり、 と はパラメータ で表されているので、
を用いて積分変数を に変換します。
です。
の積分範囲は、 が から まで変化する時に対応する の範囲で、 です。
したがって、
ここで、 であるから、