定積分 $\int_{1}^{2} \frac{x-1}{\sqrt[3]{x}} dx$ を計算する。解析学定積分積分計算累乗根2025/6/261. 問題の内容定積分 ∫12x−1x3dx\int_{1}^{2} \frac{x-1}{\sqrt[3]{x}} dx∫123xx−1dx を計算する。2. 解き方の手順まず、被積分関数を整理する。x−1x3=xx3−1x3=xx1/3−1x1/3=x2/3−x−1/3\frac{x-1}{\sqrt[3]{x}} = \frac{x}{\sqrt[3]{x}} - \frac{1}{\sqrt[3]{x}} = \frac{x}{x^{1/3}} - \frac{1}{x^{1/3}} = x^{2/3} - x^{-1/3}3xx−1=3xx−3x1=x1/3x−x1/31=x2/3−x−1/3よって、与えられた積分は∫12(x2/3−x−1/3)dx\int_{1}^{2} (x^{2/3} - x^{-1/3}) dx∫12(x2/3−x−1/3)dxとなる。次に、積分を計算する。∫(x2/3−x−1/3)dx=∫x2/3dx−∫x−1/3dx\int (x^{2/3} - x^{-1/3}) dx = \int x^{2/3} dx - \int x^{-1/3} dx∫(x2/3−x−1/3)dx=∫x2/3dx−∫x−1/3dx∫x2/3dx=x(2/3)+1(2/3)+1+C=x5/35/3+C=35x5/3+C\int x^{2/3} dx = \frac{x^{(2/3)+1}}{(2/3)+1} + C = \frac{x^{5/3}}{5/3} + C = \frac{3}{5} x^{5/3} + C∫x2/3dx=(2/3)+1x(2/3)+1+C=5/3x5/3+C=53x5/3+C∫x−1/3dx=x(−1/3)+1(−1/3)+1+C=x2/32/3+C=32x2/3+C\int x^{-1/3} dx = \frac{x^{(-1/3)+1}}{(-1/3)+1} + C = \frac{x^{2/3}}{2/3} + C = \frac{3}{2} x^{2/3} + C∫x−1/3dx=(−1/3)+1x(−1/3)+1+C=2/3x2/3+C=23x2/3+Cしたがって、∫(x2/3−x−1/3)dx=35x5/3−32x2/3+C\int (x^{2/3} - x^{-1/3}) dx = \frac{3}{5} x^{5/3} - \frac{3}{2} x^{2/3} + C∫(x2/3−x−1/3)dx=53x5/3−23x2/3+C定積分を計算する。∫12(x2/3−x−1/3)dx=[35x5/3−32x2/3]12\int_{1}^{2} (x^{2/3} - x^{-1/3}) dx = \left[ \frac{3}{5} x^{5/3} - \frac{3}{2} x^{2/3} \right]_{1}^{2}∫12(x2/3−x−1/3)dx=[53x5/3−23x2/3]12=(35(25/3)−32(22/3))−(35(15/3)−32(12/3))= \left( \frac{3}{5} (2^{5/3}) - \frac{3}{2} (2^{2/3}) \right) - \left( \frac{3}{5} (1^{5/3}) - \frac{3}{2} (1^{2/3}) \right)=(53(25/3)−23(22/3))−(53(15/3)−23(12/3))=35(25/3)−32(22/3)−35+32= \frac{3}{5} (2^{5/3}) - \frac{3}{2} (2^{2/3}) - \frac{3}{5} + \frac{3}{2}=53(25/3)−23(22/3)−53+23=35(2⋅22/3)−32(22/3)−35+32= \frac{3}{5} (2 \cdot 2^{2/3}) - \frac{3}{2} (2^{2/3}) - \frac{3}{5} + \frac{3}{2}=53(2⋅22/3)−23(22/3)−53+23=65(22/3)−32(22/3)−610+1510= \frac{6}{5} (2^{2/3}) - \frac{3}{2} (2^{2/3}) - \frac{6}{10} + \frac{15}{10}=56(22/3)−23(22/3)−106+1015=(65−32)22/3+910= (\frac{6}{5} - \frac{3}{2}) 2^{2/3} + \frac{9}{10}=(56−23)22/3+109=(12−1510)22/3+910= (\frac{12-15}{10}) 2^{2/3} + \frac{9}{10}=(1012−15)22/3+109=−31022/3+910= -\frac{3}{10} 2^{2/3} + \frac{9}{10}=−10322/3+109=9−3⋅22/310= \frac{9 - 3 \cdot 2^{2/3}}{10}=109−3⋅22/33. 最終的な答え9−3⋅22/310\frac{9 - 3 \cdot 2^{2/3}}{10}109−3⋅22/3