問題は、図に示された角度 $x$ の大きさを求めることです。図1と図2の二つの問題があります。どちらの問題でも、直線 $l$ と $m$ は平行です。

幾何学角度平行線同位角錯角
2025/3/30

1. 問題の内容

問題は、図に示された角度 xx の大きさを求めることです。図1と図2の二つの問題があります。どちらの問題でも、直線 llmm は平行です。

2. 解き方の手順

**(1)の問題**
平行線の同位角は等しいので、xx の同位角も 7272^\circ となります。したがって、xx7272^\circ です。
**(2)の問題**
llmm が平行なので、xx を求めるために、補助線を引くことを考えます。頂点に補助線を引き、llmmに平行な直線を引きます。すると、3030^\circ4040^\circ の角度が錯角によって、補助線で区切られた角度に移動します。xx3030^\circ4040^\circ の角度の和に等しくなります。
したがって、x=30+40=70x = 30^\circ + 40^\circ = 70^\circ となります。

3. 最終的な答え

(1) x=72x = 72^\circ
(2) x=70x = 70^\circ

「幾何学」の関連問題

図において、線分QBは$\angle B$の二等分線、線分QCは$\angle ACD$の二等分線である。$\angle A = \alpha$、$\angle Q = x$とするとき、$x$を$\a...

角度二等分線三角形外角図形
2025/7/30

$\theta$ が鋭角の場合と鈍角の場合について、$\sin \theta$, $\cos \theta$, $\tan \theta$ の符号をそれぞれ求める問題です。

三角関数サインコサインタンジェント鋭角鈍角単位円
2025/7/30

xy平面上に2点A(3, 2), B(8, 9)がある。点Pが直線 $l: y = x - 3$ 上を動くとき、AP + PB の最小値と、そのときの点Pの座標を求める。

幾何座標平面線分の最小値対称点直線の方程式
2025/7/30

図に示された角度について、点Pの座標を求め、三角比(sin, cos, tan)の値を求める問題です。(5)は135°の場合、(6)は150°の場合について計算します。

三角比三角関数座標角度
2025/7/30

与えられた角度(30°, 45°, 60°, 120°)に対して、原点Oからの距離OPがそれぞれ与えられたとき、点Pの座標と、三角比(sin, cos, tan)の値を求める問題です。

三角比三角関数座標角度sincostan
2025/7/30

点 $P$ は $\angle XOY$ の内部にあり、$OP = 4$ cm である。線分 $OA$ は線分 $OP$ を直線 $OX$ を対称軸として対称移動させたもの、線分 $OB$ は線分 $...

角度対称移動三角形面積正三角形直角二等辺三角形
2025/7/30

余弦定理を用いて、以下の三角形ABCに関する値を求めます。 (1) $A = 60^\circ$, $b = 8$, $c = 5$ のとき、$a$ の値を求めます。 (2) $B = 30^\cir...

余弦定理三角形辺の長さ角度
2025/7/30

長方形ABCDを点Bを中心に反時計回りに回転させて長方形EBFGを作ります。点Fは辺AD上にあり、GHは辺ADと垂直に交わり、AIは辺BFと垂直に交わります。このとき、三角形ABIと三角形GFHが合同...

合同長方形回転角度証明
2025/7/30

線分AB上に点Cがあり、$AC > CB$である。ACとCBをそれぞれ1辺とする正三角形ACDとCBEがABの同じ側に作られている。点Eを通ってABに平行な直線とCD, ADとの交点をそれぞれF, G...

幾何三角形面積平行線等積変形正三角形
2025/7/30

$|\vec{a}|=1$, $|\vec{b}|=\sqrt{2}$ であり、$\vec{a}-\vec{b}$ と $3\vec{a}+2\vec{b}$ が垂直であるとき、$\vec{a}$ と...

ベクトル内積角度垂直
2025/7/30