1から5までの数字が書かれた5枚のカードから無作為に2枚引くとき、2つの数字の積が偶数になる確率を求め、既約分数で答える。

確率論・統計学確率組み合わせ偶数既約分数
2025/6/27

1. 問題の内容

1から5までの数字が書かれた5枚のカードから無作為に2枚引くとき、2つの数字の積が偶数になる確率を求め、既約分数で答える。

2. 解き方の手順

まず、5枚のカードから2枚を引く場合の総数を計算する。これは組み合わせの問題であり、5枚から2枚を選ぶ組み合わせの数なので、5C2_5C_2 で表される。
5C2=5!2!(52)!=5!2!3!=5×42×1=10_5C_2 = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
次に、2つの数字の積が偶数になる場合を考える。2つの数字の積が偶数になるのは、少なくとも1つの数字が偶数の場合である。言い換えれば、2つの数字がどちらも奇数の場合以外は積が偶数になる。1から5までの数字のうち、奇数は1, 3, 5の3つである。この3つの奇数から2つを選ぶ組み合わせの数は、3C2_3C_2 で表される。
3C2=3!2!(32)!=3!2!1!=3×22×1=3_3C_2 = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1!} = \frac{3 \times 2}{2 \times 1} = 3
したがって、2つの数字の積が奇数になる場合は3通りである。積が偶数になる場合は、全体の組み合わせの数から積が奇数になる組み合わせの数を引けばよい。
積が偶数になる場合の数 = 全体の組み合わせ数 - 積が奇数になる組み合わせ数
= 10 - 3 = 7
したがって、2つの数字の積が偶数になる確率は、
積が偶数になる場合の数全体の組み合わせ数=710\frac{\text{積が偶数になる場合の数}}{\text{全体の組み合わせ数}} = \frac{7}{10}

3. 最終的な答え

7/10

「確率論・統計学」の関連問題

1つのサイコロを4回振ったとき、出た目のうちの最大値をXとします。 (1) 確率 $P(X \le 4)$ を求めます。 (2) 確率 $P(X = 4)$ を求めます。

確率サイコロ確率分布最大値
2025/6/27

10本中2本の当たりくじがある。A, B, Cの順に1本ずつ引く。引いたくじは元に戻さないとき、Cが当たる確率を求めよ。

確率条件付き確率くじ引き
2025/6/27

## 1. 問題の内容

確率組み合わせ期待値
2025/6/27

あるグループは学生4名、社会人5名で構成されている。この中から委員会メンバーとして、学生2名、社会人2名を選ぶ場合、選び方は何通りあるか。

組み合わせ場合の数組合せ
2025/6/27

$a$を含む男子4人と、$b$を含む女子3人がいる。この7人の中から1人を選ぶとき、$a$または$b$が選ばれる確率を求める。

確率組み合わせ排反事象
2025/6/27

男子4人(aを含む)と女子3人(bを含む)の中から、くじ引きで男子1人、女子1人を選ぶとき、aまたはbが選ばれる確率を求めよ。

確率組み合わせ排反事象
2025/6/27

A高等学校の1年生の女子グループにおけるメッセージアプリの使用回数に関するドットプロットが与えられている。 問題は以下の2点である。 (1) この女子グループの人数を求める。 (2) メッセージアプリ...

統計データ分析中央値最頻値ドットプロット
2025/6/27

与えられた表は、あるクラスの英語と数学の2科目合計得点の分布を表しています。 ① 表中のイの数値を求める。 ② 表中のアの数値を求める。 ③ 表中のウの数値を求める。 ④ 別クラスの生徒の資料が10人...

統計度数分布相対度数データの分析
2025/6/27

100人に対して2つの新商品PとQのアンケートを実施した。Qを知っている人はPを知っている人の3倍であり、両方を知っている人は10人、どちらも知らない人は18人である。このとき、Qを知っている人の数を...

集合アンケート人数
2025/6/27

健康講座を受講した45人が、3つの野菜P, Q, Rの中から2つを選びました。Pを選んだ人は38人、Qを選ばなかった人は10人であるとき、Rを選んだ人の数を求める問題です。

集合場合の数数え上げ
2025/6/27