与えられた級数 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$ の和を求める問題です。解析学級数等比数列数列の和無限級数2025/6/271. 問題の内容与えられた級数 S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−1 の和を求める問題です。2. 解き方の手順まず、SSS に xxx を掛けて xSxSxS を計算します。xS=x+4x2+7x3+10x4+⋯+(3n−2)xnxS = x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n}xS=x+4x2+7x3+10x4+⋯+(3n−2)xn次に、SSS から xSxSxS を引きます。S−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S - xS = (1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}) - (x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n})S−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S(1−x)=1+(4x−x)+(7x2−4x2)+(10x3−7x3)+⋯+((3n−2)xn−1−(3n−5)xn−1)−(3n−2)xnS(1-x) = 1 + (4x-x) + (7x^2 - 4x^2) + (10x^3 - 7x^3) + \dots + ((3n-2)x^{n-1} - (3n-5)x^{n-1}) - (3n-2)x^{n}S(1−x)=1+(4x−x)+(7x2−4x2)+(10x3−7x3)+⋯+((3n−2)xn−1−(3n−5)xn−1)−(3n−2)xnS(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1-x) = 1 + 3x + 3x^2 + 3x^3 + \dots + 3x^{n-1} - (3n-2)x^nS(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnS(1-x) = 1 + 3(x + x^2 + x^3 + \dots + x^{n-1}) - (3n-2)x^nS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnここで、x+x2+x3+⋯+xn−1x + x^2 + x^3 + \dots + x^{n-1}x+x2+x3+⋯+xn−1 は初項 xxx, 公比 xxx, 項数 n−1n-1n−1 の等比数列の和であるので、x+x2+x3+⋯+xn−1=x(1−xn−1)1−xx + x^2 + x^3 + \dots + x^{n-1} = \frac{x(1-x^{n-1})}{1-x}x+x2+x3+⋯+xn−1=1−xx(1−xn−1)これを S(1−x)S(1-x)S(1−x) の式に代入します。S(1−x)=1+3x(1−xn−1)1−x−(3n−2)xnS(1-x) = 1 + 3\frac{x(1-x^{n-1})}{1-x} - (3n-2)x^nS(1−x)=1+31−xx(1−xn−1)−(3n−2)xnS(1−x)=(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)1−xS(1-x) = \frac{(1-x) + 3x(1-x^{n-1}) - (3n-2)x^n(1-x)}{1-x}S(1−x)=1−x(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)S(1−x)=1−x+3x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1-x) = \frac{1 - x + 3x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1−x+3x−3xn−(3n−2)xn+(3n−2)xn+1S(1−x)=1+2x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1-x) = \frac{1 + 2x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1+2x−3xn−(3n−2)xn+(3n−2)xn+1S(1−x)=1+2x−(3n+1)xn+(3n−2)xn+11−xS(1-x) = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1+2x−(3n+1)xn+(3n−2)xn+1したがって、SSS はS=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+13. 最終的な答えS=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1 + 2x - (3n+1)x^n + (3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+1