与えられた二次方程式 $2x^2 + 4x + 3 = 0$ を解く問題です。

代数学二次方程式解の公式複素数
2025/6/27

1. 問題の内容

与えられた二次方程式 2x2+4x+3=02x^2 + 4x + 3 = 0 を解く問題です。

2. 解き方の手順

二次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解は、解の公式 x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} で求められます。
この問題では、a=2a = 2, b=4b = 4, c=3c = 3 なので、解の公式に代入します。
x=4±4242322x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2}
x=4±16244x = \frac{-4 \pm \sqrt{16 - 24}}{4}
x=4±84x = \frac{-4 \pm \sqrt{-8}}{4}
x=4±22i4x = \frac{-4 \pm 2\sqrt{2}i}{4}
x=2±2i2x = \frac{-2 \pm \sqrt{2}i}{2}

3. 最終的な答え

x=2+2i2,22i2x = \frac{-2 + \sqrt{2}i}{2}, \frac{-2 - \sqrt{2}i}{2} または x=1+22i,122ix = -1 + \frac{\sqrt{2}}{2}i, -1 - \frac{\sqrt{2}}{2}i

「代数学」の関連問題

関数 $y = a(x-1) + 3$ のグラフが、定数 $a$ がどんな値をとっても常に通る定点Pの座標を求める問題です。

一次関数グラフ定点
2025/6/27

3つの直線 $x - 2y + 4 = 0$, $2x + y + 3 = 0$, $mx - y + 3 = 0$ が三角形を作らないような定数 $m$ の値を求める問題です。

直線方程式幾何学連立方程式平行交点
2025/6/27

関数 $f(x) = x^2 - 2(a+3)x + a + 13$ について、以下の問いに答える問題です。 (1) グラフの頂点の座標を求める。 (2) グラフがx軸と接する時のaの値を求める。 (...

二次関数平方完成グラフ頂点判別式最大値・最小値二次不等式
2025/6/27

3つの直線 $2x - 3y = 12$, $-\frac{1}{3}x + 2y = 1$, $x - ay = 8$ が三角形を作らないような $a$ の値を全て求めよ。

直線連立方程式幾何学方程式傾き
2025/6/27

$a+b+c=0$ のとき、$a^2+ca=b^2+bc$ を証明する。

式の証明因数分解式の展開等式の証明
2025/6/27

$a+b+c=0$のとき、次の等式を証明します。 $ab(a+b)+bc(b+c)+ca(c+a)+3abc = 0$

等式の証明式の展開因数分解対称式
2025/6/27

与えられた3つの行列の逆行列を求める問題です。 (1) $A = \begin{pmatrix} 2 & 5 \\ 4 & 9 \end{pmatrix}$ (2) $B = \begin{pmatr...

行列逆行列線形代数
2025/6/27

与えられた3つの行列の逆行列を求める問題です。 (1) $A = \begin{pmatrix} 2 & 5 \\ 4 & 9 \end{pmatrix}$ (2) $B = \begin{pmatr...

行列逆行列線形代数
2025/6/27

行列 $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ を対角化せよ。

線形代数行列対角化固有値固有ベクトル複素数
2025/6/27

与えられた3つの行列の逆行列を求める問題です。 (1) $A = \begin{pmatrix} 2 & 5 \\ 4 & 9 \end{pmatrix}$ (2) $B = \begin{pmatr...

行列逆行列線形代数
2025/6/27