関数 $y = e^{-x} \cos x$ が与えられています。この関数の2階微分 $y''$ は $y'' = 2e^{-x} \sin x$ と計算されています。問題は、$y'' = 0$ となる $x$ の値を求めることです。

解析学微分三角関数指数関数2階微分方程式
2025/6/27

1. 問題の内容

関数 y=excosxy = e^{-x} \cos x が与えられています。この関数の2階微分 yy''y=2exsinxy'' = 2e^{-x} \sin x と計算されています。問題は、y=0y'' = 0 となる xx の値を求めることです。

2. 解き方の手順

y=2exsinx=0y'' = 2e^{-x} \sin x = 0 を解きます。
2exsinx=02e^{-x} \sin x = 0
exe^{-x} は常に正であるため、ex0e^{-x} \neq 0です。
したがって、sinx=0\sin x = 0 を解く必要があります。
sinx=0\sin x = 0 となる xx の値は、x=nπx = n\pi (n は整数) です。

3. 最終的な答え

x=nπx = n\pi, nn は整数

「解析学」の関連問題

関数 $f(\theta) = 2\sqrt{3}\cos^2\theta - 2\sin\theta\cos\theta$ が与えられている。 (1) 2倍角の公式を用いて $\sin\theta\...

三角関数加法定理最大値最小値2倍角の公式三角関数の合成
2025/6/28

関数 $f(x) = x^3 + px^2 + qx + \frac{7}{2}$ および $g(x) = x^2 + 8x + r$ が与えられている。曲線 $y=f(x)$ を $C$, 放物線 ...

微分極値接線積分面積
2025/6/28

$\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$ であることを用いて、$\sin\frac{\pi}{12} \cos\frac{\pi}{12}$ の...

三角関数加法定理2倍角の公式sincos
2025/6/28

$x > 1$ のとき、不等式 $\log x < \frac{x^2 - 1}{2x}$ が成り立つことを示す問題です。

不等式対数関数微分単調増加導関数
2025/6/28

$\cos(2\theta - \frac{\pi}{3}) = \frac{1}{2}$ を満たす $\theta$ を求めます。

三角関数方程式解法
2025/6/28

問題は、$\tan(2\theta + \frac{\pi}{3}) = -\frac{1}{\sqrt{3}}$を満たす$\theta$を求める問題です。

三角関数tan方程式
2025/6/28

与えられた問題は2つあります。 (1) $x > 0$ のとき、不等式 $\log(x+1) < x$ を証明すること。 (2) $a$ を定数とするとき、方程式 $\log x - x = a$ と...

不等式対数関数指数関数実数解微分単調性極値
2025/6/28

関数 $f(x) = -x^2 + 2x$ の区間 $a \le x \le a+1$ における最大値を $M(a)$ とする。$M(a)$を求める問題を解く。

最大値関数二次関数平方完成場合分け
2025/6/28

次の2つの関数の不定積分を求める問題です。 (1) $\tan^5 x$ (2) $\frac{1}{1 + \sin x}$

不定積分三角関数積分
2025/6/28

与えられた数列の和 $S_n$ を求める問題です。 数列は $S_n = 3\cdot 2 + 6 \cdot 2^2 + 9 \cdot 2^3 + 12 \cdot 2^4 + \cdots + ...

数列級数等比数列の和
2025/6/28