与えられた式 $\frac{1}{\sqrt{k+2} + \sqrt{k+3}}$ を変形して、$\sqrt{k+3} - \sqrt{k+2}$ となることを示す問題です。代数学式の変形有理化平方根2025/6/281. 問題の内容与えられた式 1k+2+k+3\frac{1}{\sqrt{k+2} + \sqrt{k+3}}k+2+k+31 を変形して、k+3−k+2\sqrt{k+3} - \sqrt{k+2}k+3−k+2 となることを示す問題です。2. 解き方の手順与えられた分数の分母を有理化するために、分母の共役な複素数 k+2−k+3\sqrt{k+2} - \sqrt{k+3}k+2−k+3 を分子と分母に掛けます。1k+2+k+3=1k+2+k+3⋅k+2−k+3k+2−k+3\frac{1}{\sqrt{k+2} + \sqrt{k+3}} = \frac{1}{\sqrt{k+2} + \sqrt{k+3}} \cdot \frac{\sqrt{k+2} - \sqrt{k+3}}{\sqrt{k+2} - \sqrt{k+3}}k+2+k+31=k+2+k+31⋅k+2−k+3k+2−k+3=k+2−k+3(k+2)2−(k+3)2= \frac{\sqrt{k+2} - \sqrt{k+3}}{(\sqrt{k+2})^2 - (\sqrt{k+3})^2}=(k+2)2−(k+3)2k+2−k+3=k+2−k+3(k+2)−(k+3)= \frac{\sqrt{k+2} - \sqrt{k+3}}{(k+2) - (k+3)}=(k+2)−(k+3)k+2−k+3=k+2−k+3k+2−k−3= \frac{\sqrt{k+2} - \sqrt{k+3}}{k+2 - k - 3}=k+2−k−3k+2−k+3=k+2−k+3−1= \frac{\sqrt{k+2} - \sqrt{k+3}}{-1}=−1k+2−k+3=−(k+2−k+3)= -(\sqrt{k+2} - \sqrt{k+3})=−(k+2−k+3)=k+3−k+2= \sqrt{k+3} - \sqrt{k+2}=k+3−k+23. 最終的な答えk+3−k+2\sqrt{k+3} - \sqrt{k+2}k+3−k+2