複素数 $ (x-4) + (y+6)i = 0 $ が与えられています。ここで、$x$ と $y$ は実数です。この方程式を満たす $x$ と $y$ の値を求めます。

代数学複素数方程式実部虚部
2025/6/28

1. 問題の内容

複素数 (x4)+(y+6)i=0 (x-4) + (y+6)i = 0 が与えられています。ここで、xxyy は実数です。この方程式を満たす xxyy の値を求めます。

2. 解き方の手順

複素数が0になるためには、実部と虚部がともに0でなければなりません。
したがって、x4=0x-4 = 0 かつ y+6=0y+6 = 0 となります。
まず、x4=0x-4 = 0 を解きます。
両辺に4を足すと、
x=4x = 4
となります。
次に、y+6=0y+6 = 0 を解きます。
両辺から6を引くと、
y=6y = -6
となります。

3. 最終的な答え

x=4x = 4, y=6y = -6

「代数学」の関連問題

与えられた行列 $A$ と $B$ をそれぞれ基本変形によって単位行列にした過程が示されている。これらの変形から、$A = P_1P_2P_3$ および $B = Q_1Q_2Q_3$ を満たす基本行...

線形代数行列基本変形基本行列
2025/6/28

複素数 $(2+3i)$ の3乗を計算する問題です。

複素数複素数の計算代数
2025/6/28

問題は (3) $\log_{\frac{1}{5}} \sqrt[5]{125}$ と (4) $\log_9 8 \cdot \log_8 3$ の2つです。

対数指数対数の性質底の変換公式
2025/6/28

複素数の足し算と引き算を行う問題です。 (1) $(3+4i) + (5-2i)$ (2) $(2-i) - (4-2i)$

複素数複素数の演算加算減算
2025/6/28

与えられた問題は、対数の計算です。具体的には、$\log_2 7 \cdot \log_7 32$ の値を求める必要があります。

対数底の変換
2025/6/28

与えられた複素数の等式 $(5x - 3y) + (4y + 2)i = 1 - 6i$ を満たす実数 $x$ と $y$ の値を求めます。

複素数連立方程式実数虚数
2025/6/28

(5) $\log_5 \sqrt[6]{5}$ (6) $\log_4 \frac{1}{\sqrt[3]{4}}$

対数指数計算
2025/6/28

次の式を計算します。 $\frac{x}{x^2+3x+2} + \frac{1}{x+1}$

分数式式の計算因数分解通分
2025/6/28

数列$\{a_n\}$の初項から第 $n$ 項までの和 $S_n$ が与えられたとき、一般項 $a_n$ を求める問題です。 具体的には、以下の3つの場合について $a_n$ を求めます。 (1) $...

数列一般項
2025/6/28

問題は数列の和 $S_n$ が $2^n - 1$ に等しいことを示しています。つまり、$S_n = 2^n - 1$ であることを確認するか、あるいはこの式を使って何かを計算する可能性があります。

数列等比数列数学的帰納法
2025/6/28