与えられた式 $(-8a^2b) \div 4a$ を計算しなさい。

代数学式の計算単項式割り算文字式
2025/6/29

1. 問題の内容

与えられた式 (8a2b)÷4a(-8a^2b) \div 4a を計算しなさい。

2. 解き方の手順

まず、式を分数で表します。
8a2b4a\frac{-8a^2b}{4a}
次に、係数部分を計算します。
84=2\frac{-8}{4} = -2
次に、aa の指数を計算します。a2a^2aa で割るので、a21=a1=aa^{2-1} = a^1 = a となります。
最後に、残った bb を考慮します。
これらを組み合わせると、最終的な式は次のようになります。
2ab-2ab

3. 最終的な答え

2ab-2ab

「代数学」の関連問題

等比数列 $\{a_n\}$ において、第3項が45、第5項が405である。このとき、初項 $a$ と公比 $r$ を求め、一般項 $a_n$ を求める。また、初項が-5、公比が-5の等比数列 $\{...

数列等比数列一般項初項公比
2025/6/29

$a+b+c=0$ のとき、$a^2+b^2+c^2=2a(a+b)+2b(b+c)+2c(c+a)$ を証明する。

式の証明等式代入式の展開
2025/6/29

与えられた問題は、対数の積 $\log_4 5 \cdot \log_5 8$ を計算することです。

対数底の変換公式対数計算
2025/6/29

関数 $f(x) = ax^2 + 4ax + a^2 + 1$ が $-4 \leq x \leq 1$ の範囲で最大値7をとる時、定数 $a$ の値を求めよ。

二次関数最大値平方完成二次方程式場合分け
2025/6/29

次の和 $S$ を求めます。 $S = \frac{1}{3 \cdot 7} + \frac{1}{7 \cdot 11} + \frac{1}{11 \cdot 15} + \cdots + \f...

数列部分分数分解シグマtelescoping sum
2025/6/29

問題83の(1)から(4)と、例題15を解きます。 問題83は、絶対値を含む方程式と不等式を解く問題です。 例題15は、$|x| + |x-4| = 6$を解く問題です。

絶対値方程式不等式場合分け
2025/6/29

初項が100、末項が15である数列の項数 $n$ を求めよ、という問題です。ただし、数列の種類(等差数列、等比数列など)は指定されていません。ここでは等差数列と仮定して項数nを求めます。

数列等差数列一般項項数
2025/6/29

数列の和 $\sum_{k=1}^{n} 2^{k-1}$ を求める問題です。

数列等比数列等差数列一般項シグマ級数
2025/6/29

(1) 放物線 $y = -3x^2 + x - 1$ を平行移動した曲線で、頂点が点 $(-2, 3)$ である放物線の方程式を求める。 (2) 放物線 $y = x^2 - 3x$ を平行移動した...

二次関数放物線平行移動頂点
2025/6/29

数列 $\{a_n\}$ の初項から第 $n$ 項までの和 $S_n$ が $S_n = 2n^2 + n$ で与えられているとき、数列 $\{a_n\}$ の一般項 $a_n$ を求める問題。また、...

数列漸化式部分分数分解シグマ
2025/6/29