問題は、与えられた図形を6種類の色を使って塗り分ける場合の数を求める問題です。ただし、各部分は異なる色で塗る必要があり、回転して同じになる塗り方は同一とみなします。 図形は、横に3つの長方形が並んだ上段と、下段に1つの長方形がある図形です。

幾何学組み合わせ図形の塗り分け回転対称性
2025/6/29
## 問題37 (2)の解答

1. 問題の内容

問題は、与えられた図形を6種類の色を使って塗り分ける場合の数を求める問題です。ただし、各部分は異なる色で塗る必要があり、回転して同じになる塗り方は同一とみなします。 図形は、横に3つの長方形が並んだ上段と、下段に1つの長方形がある図形です。

2. 解き方の手順

まず、回転を考慮せずに塗り分ける場合の数を計算します。次に、回転によって同一になる塗り方がないか検討します。
* **回転を考慮しない場合の塗り方:**
上段の3つの長方形を塗る方法は、6×5×4=1206 \times 5 \times 4 = 120 通りです。
下段の長方形を塗る方法は、上段で使用した3色以外の3色から選ぶので、3通りです。
したがって、回転を考慮しない場合の塗り方は、120×3=360120 \times 3 = 360 通りです。
* **回転を考慮する場合:**
この図形は回転させても形が変わらないため、回転によって同一になる塗り方はありません。
したがって、塗り方の総数は、360通りとなります。

3. 最終的な答え

360通り

「幾何学」の関連問題

三角形ABCにおいて、点Iは内心である。直線AIと辺BCの交点をDとする。AB=4, AC=5, BC=7であるとき、(1)線分BDの長さを求めよ。(2) AI:IDを求めよ。

三角形内心角の二等分線線分の長さ
2025/6/30

台形ABCDにおいて、AB=7, BC=6, CD=3, $\angle B = \angle C = 90^\circ$である。点PはAを出発し、台形の辺上をB, C, Dの順にDまで動く。点PがA...

図形台形面積関数二次関数
2025/6/30

台形ABCDにおいて、AB = 7, BC = 6, CD = 3, ∠B = ∠C = 90°とする。点PはAを出発し、台形の辺上をB, C, Dの順にDまで動く。点PがAから動いた道のりを $x$...

台形面積関数座標平面
2025/6/30

* 問題7:3点A(2, 3), B(5, 1), C(-1, 2)を頂点とする三角形ABCの重心Gの座標を求める。 * 問題8:直線の方程式 $2x - 3y - 6 = 0$ の傾きとy切...

座標平面重心直線傾きy切片直線の方程式
2025/6/30

問題は以下の3つです。 * 問題4:2点A(2), B(6)を結ぶ線分ABを3:1に外分する点Pと、1:3に外分する点Qの座標を求める。 * 問題5:2点間の距離を求める。 * (...

座標線分内分点外分点距離
2025/6/30

問題6について、2点A(-2, 3), B(3, -2)を結ぶ線分ABについて、以下の点の座標を求める問題です。 (1) 線分ABを3:2に内分する点P (2) 線分ABを2:1に外分する点Q

座標線分内分点外分点
2025/6/30

7. 3点 A(2, 3), B(5, 1), C(-1, 2) を頂点とする三角形 ABC の重心 G の座標を求める。 8. 直線 $2x - 3y - 6 = 0$ の傾きと y 切片を求め...

座標平面重心直線傾きy切片直線の方程式
2025/6/30

問題6は、2点A(-2, 3)とB(3, -2)を結ぶ線分ABについて、以下の点の座標を求める問題です。 (1) 線分ABを3:2に内分する点Pの座標 (2) 線分ABを2:1に外分する点Qの座標

座標線分内分点外分点
2025/6/30

与えられた問題は以下の通りです。 1. 2点間の距離を求める。 (1) A(1), B(5) (2) A(1), B(-3)

距離数直線内分点中点座標
2025/6/30

直方体ABCD-EFGHにおいて、$AB = \sqrt{3}$, $AD = AE = 1$とする。以下の内積を求める。 (1) $\overrightarrow{AE} \cdot \overri...

ベクトル内積空間図形
2025/6/30