関数 $y = ax^2$ において、$x$ の変域が $-2 \le x \le \frac{1}{2}$ のとき、$y$ の変域が $0 \le y \le 12$ となる。このとき、$a$ の値を求めよ。

代数学二次関数放物線最大値最小値
2025/3/30

1. 問題の内容

関数 y=ax2y = ax^2 において、xx の変域が 2x12-2 \le x \le \frac{1}{2} のとき、yy の変域が 0y120 \le y \le 12 となる。このとき、aa の値を求めよ。

2. 解き方の手順

y=ax2y = ax^2 は原点を通る放物線であり、xx の変域が与えられている。yy の変域が 0y120 \le y \le 12 であることから、放物線の頂点が y=0y=0 であることがわかる。したがって、a>0a > 0 である。
x=2x = -2 のとき、y=a(2)2=4ay = a(-2)^2 = 4a であり、x=12x = \frac{1}{2} のとき、y=a(12)2=14ay = a(\frac{1}{2})^2 = \frac{1}{4}a である。
xx の変域 2x12-2 \le x \le \frac{1}{2} において、x=2x = -2 のときに yy の最大値をとる。
したがって、
4a=124a = 12
a=124a = \frac{12}{4}
a=3a = 3

3. 最終的な答え

3

「代数学」の関連問題

与えられた連立一次方程式を解きます。 連立方程式は以下の通りです。 $x + y + 1 = 0$ $2x - y - 7 = 0$

連立一次方程式加減法方程式
2025/7/3

与えられた二つの不等式を解く問題です。 一つ目の不等式は $\sqrt{3x-1} > 2x - 2$、二つ目の不等式は $|3x+2| < 2 - x$ です。

不等式平方根絶対値二次不等式解の公式
2025/7/3

二重根号 $\sqrt{8 - 2\sqrt{15}}$ を簡単にする問題です。

二重根号根号平方根の計算
2025/7/3

$a$ は正の定数とする。関数 $y = x^2 - 4x + 1$ ($0 \le x \le a$) の最小値を求めよ。

二次関数最大最小平方完成場合分け
2025/7/3

一次変換 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} \begin{...

線形代数一次変換行列ベクトル
2025/7/3

与えられた式 $12x^2z - 29xyz + 15y^2z$ を因数分解する問題です。

因数分解多項式たすき掛け
2025/7/3

$a$ は正の定数とする。関数 $y = x^2 - 4x + 1$ ($0 \le x \le a$) の最大値を求めよ。

二次関数最大値場合分け定義域
2025/7/3

与えられた二次式 $6x^2 - xy - 12y^2$ を因数分解してください。

因数分解二次式たすき掛け
2025/7/3

ベクトル $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ を $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ に、ベクトル $\begin{...

線形代数一次変換行列連立方程式
2025/7/3

問題は2つあります。 (1) ベクトル $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ を $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ ...

線形代数一次変換行列逆行列ベクトル
2025/7/3