定積分 $\int_{0}^{1} \left( \frac{x+1}{x^2+1} \right)^2 dx$ を計算します。解析学積分定積分置換積分arctan2025/6/291. 問題の内容定積分 ∫01(x+1x2+1)2dx\int_{0}^{1} \left( \frac{x+1}{x^2+1} \right)^2 dx∫01(x2+1x+1)2dx を計算します。2. 解き方の手順まず、積分の中身を展開します。(x+1x2+1)2=(x+1)2(x2+1)2=x2+2x+1(x2+1)2\left( \frac{x+1}{x^2+1} \right)^2 = \frac{(x+1)^2}{(x^2+1)^2} = \frac{x^2+2x+1}{(x^2+1)^2}(x2+1x+1)2=(x2+1)2(x+1)2=(x2+1)2x2+2x+1よって、∫01x2+2x+1(x2+1)2dx=∫01x2+1(x2+1)2dx+∫012x(x2+1)2dx=∫011x2+1dx+∫012x(x2+1)2dx\int_{0}^{1} \frac{x^2+2x+1}{(x^2+1)^2} dx = \int_{0}^{1} \frac{x^2+1}{(x^2+1)^2} dx + \int_{0}^{1} \frac{2x}{(x^2+1)^2} dx = \int_{0}^{1} \frac{1}{x^2+1} dx + \int_{0}^{1} \frac{2x}{(x^2+1)^2} dx∫01(x2+1)2x2+2x+1dx=∫01(x2+1)2x2+1dx+∫01(x2+1)22xdx=∫01x2+11dx+∫01(x2+1)22xdxここで、∫011x2+1dx=[arctanx]01=arctan1−arctan0=π4−0=π4\int_{0}^{1} \frac{1}{x^2+1} dx = [\arctan x]_{0}^{1} = \arctan 1 - \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}∫01x2+11dx=[arctanx]01=arctan1−arctan0=4π−0=4πまた、u=x2+1u = x^2+1u=x2+1 とおくと、du=2xdxdu = 2x dxdu=2xdx より、∫012x(x2+1)2dx=∫121u2du=[−1u]12=−12−(−1)=12\int_{0}^{1} \frac{2x}{(x^2+1)^2} dx = \int_{1}^{2} \frac{1}{u^2} du = \left[ -\frac{1}{u} \right]_{1}^{2} = -\frac{1}{2} - (-1) = \frac{1}{2}∫01(x2+1)22xdx=∫12u21du=[−u1]12=−21−(−1)=21したがって、∫01x2+2x+1(x2+1)2dx=π4+12\int_{0}^{1} \frac{x^2+2x+1}{(x^2+1)^2} dx = \frac{\pi}{4} + \frac{1}{2}∫01(x2+1)2x2+2x+1dx=4π+213. 最終的な答えπ4+12\frac{\pi}{4} + \frac{1}{2}4π+21