定積分 $\int_{-\sqrt{3}}^{0} (\frac{2x}{x^2+1})^2 dx$ を、 $x = \tan{\theta}$ の置換を用いて計算します。解析学定積分置換積分三角関数積分計算2025/6/291. 問題の内容定積分 ∫−30(2xx2+1)2dx\int_{-\sqrt{3}}^{0} (\frac{2x}{x^2+1})^2 dx∫−30(x2+12x)2dx を、 x=tanθx = \tan{\theta}x=tanθ の置換を用いて計算します。2. 解き方の手順まず、x=tanθx = \tan{\theta}x=tanθ と置換すると、dx=1cos2θdθ=(1+tan2θ)dθdx = \frac{1}{\cos^2{\theta}} d\theta = (1+\tan^2{\theta})d\thetadx=cos2θ1dθ=(1+tan2θ)dθ となります。また、積分範囲も変更します。x=−3x = -\sqrt{3}x=−3 のとき、tanθ=−3\tan{\theta} = -\sqrt{3}tanθ=−3 より θ=−π3\theta = -\frac{\pi}{3}θ=−3π となります。x=0x = 0x=0 のとき、tanθ=0\tan{\theta} = 0tanθ=0 より θ=0\theta = 0θ=0 となります。したがって、積分は次のように書き換えられます。∫−30(2xx2+1)2dx=∫−π30(2tanθtan2θ+1)2(1+tan2θ)dθ\int_{-\sqrt{3}}^{0} (\frac{2x}{x^2+1})^2 dx = \int_{-\frac{\pi}{3}}^{0} (\frac{2\tan{\theta}}{\tan^2{\theta}+1})^2 (1+\tan^2{\theta}) d\theta∫−30(x2+12x)2dx=∫−3π0(tan2θ+12tanθ)2(1+tan2θ)dθtan2θ+1=1cos2θ\tan^2{\theta}+1 = \frac{1}{\cos^2{\theta}}tan2θ+1=cos2θ1 であるから、∫−π30(2tanθ1cos2θ)21cos2θdθ=∫−π30(2tanθcos2θ)21cos2θdθ\int_{-\frac{\pi}{3}}^{0} (\frac{2\tan{\theta}}{\frac{1}{\cos^2{\theta}}})^2 \frac{1}{\cos^2{\theta}} d\theta = \int_{-\frac{\pi}{3}}^{0} (2\tan{\theta} \cos^2{\theta})^2 \frac{1}{\cos^2{\theta}} d\theta∫−3π0(cos2θ12tanθ)2cos2θ1dθ=∫−3π0(2tanθcos2θ)2cos2θ1dθ=∫−π304sin2θcos2θcos4θ1cos2θdθ=∫−π304sin2θdθ= \int_{-\frac{\pi}{3}}^{0} 4 \frac{\sin^2{\theta}}{\cos^2{\theta}} \cos^4{\theta} \frac{1}{\cos^2{\theta}} d\theta = \int_{-\frac{\pi}{3}}^{0} 4\sin^2{\theta} d\theta=∫−3π04cos2θsin2θcos4θcos2θ1dθ=∫−3π04sin2θdθsin2θ=1−cos2θ2\sin^2{\theta} = \frac{1-\cos{2\theta}}{2}sin2θ=21−cos2θ を用いて、∫−π304sin2θdθ=∫−π304(1−cos2θ2)dθ=∫−π302(1−cos2θ)dθ\int_{-\frac{\pi}{3}}^{0} 4\sin^2{\theta} d\theta = \int_{-\frac{\pi}{3}}^{0} 4 (\frac{1-\cos{2\theta}}{2}) d\theta = \int_{-\frac{\pi}{3}}^{0} 2 (1-\cos{2\theta}) d\theta∫−3π04sin2θdθ=∫−3π04(21−cos2θ)dθ=∫−3π02(1−cos2θ)dθ=2[θ−12sin2θ]−π30=2[(0−12sin0)−(−π3−12sin(−2π3))]= 2 \left[ \theta - \frac{1}{2}\sin{2\theta} \right]_{-\frac{\pi}{3}}^{0} = 2 \left[ (0 - \frac{1}{2}\sin{0}) - (-\frac{\pi}{3} - \frac{1}{2}\sin{(-\frac{2\pi}{3})}) \right]=2[θ−21sin2θ]−3π0=2[(0−21sin0)−(−3π−21sin(−32π))]=2[0−(−π3−12(−32))]=2[π3−34]=2π3−32= 2 \left[ 0 - (-\frac{\pi}{3} - \frac{1}{2}(-\frac{\sqrt{3}}{2})) \right] = 2 \left[ \frac{\pi}{3} - \frac{\sqrt{3}}{4} \right] = \frac{2\pi}{3} - \frac{\sqrt{3}}{2}=2[0−(−3π−21(−23))]=2[3π−43]=32π−233. 最終的な答え2π3−32\frac{2\pi}{3} - \frac{\sqrt{3}}{2}32π−23