$\tan \alpha = t$ のとき、$\cos^2 \alpha$, $\sin 2\alpha$, $\cos 2\alpha$ を $t$ で表す。その他三角関数相互関係倍角の公式数式処理2025/6/291. 問題の内容tanα=t\tan \alpha = ttanα=t のとき、cos2α\cos^2 \alphacos2α, sin2α\sin 2\alphasin2α, cos2α\cos 2\alphacos2α を ttt で表す。2. 解き方の手順まず、三角関数の相互関係を利用します。1+tan2α=1cos2α1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}1+tan2α=cos2α1これより、cos2α=11+tan2α\cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha}cos2α=1+tan2α1tanα=t\tan \alpha = ttanα=t より、cos2α=11+t2\cos^2 \alpha = \frac{1}{1 + t^2}cos2α=1+t21次に、sin2α\sin 2\alphasin2α を求めます。sin2α=2sinαcosα=2tanαcos2α\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \tan \alpha \cos^2 \alphasin2α=2sinαcosα=2tanαcos2αsin2α=2tanαcos2α=2t⋅11+t2=2t1+t2\sin 2\alpha = 2 \tan \alpha \cos^2 \alpha = 2t \cdot \frac{1}{1 + t^2} = \frac{2t}{1 + t^2}sin2α=2tanαcos2α=2t⋅1+t21=1+t22t最後に、cos2α\cos 2\alphacos2α を求めます。cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alphacos2α=cos2α−sin2α=2cos2α−1=1−2sin2αcos2α=cos2α−sin2α=cos2α(1−tan2α)\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \cos^2 \alpha (1 - \tan^2 \alpha)cos2α=cos2α−sin2α=cos2α(1−tan2α)cos2α=1−tan2α1+tan2α=1−t21+t2\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{1 - t^2}{1 + t^2}cos2α=1+tan2α1−tan2α=1+t21−t23. 最終的な答えcos2α=11+t2\cos^2 \alpha = \frac{1}{1 + t^2}cos2α=1+t21sin2α=2t1+t2\sin 2\alpha = \frac{2t}{1 + t^2}sin2α=1+t22tcos2α=1−t21+t2\cos 2\alpha = \frac{1 - t^2}{1 + t^2}cos2α=1+t21−t2